• 제목/요약/키워드: spacecraft attitude estimation

검색결과 27건 처리시간 0.029초

Attitude estimation: with or without spacecraft dynamics?

  • Yang, Yaguang;Zhou, Zhiqiang
    • Advances in aircraft and spacecraft science
    • /
    • 제4권3호
    • /
    • pp.335-351
    • /
    • 2017
  • Kalman filter based spacecraft attitude estimation has been used in many space missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is easier in computation than the one with full quaternion. Simulations are conducted to verify our claims.

Kalman Filtering for Spacecraft Attitude Estimation by Low-Cost Sensors

  • Lee, Henzeh;Choi, Yoon-Hyuk;Bang, Hyo-Choong;Park, Jong-Oh
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.147-161
    • /
    • 2008
  • In this paper, fine attitude estimation using low-cost sensors for attitude pointing missions of spacecraft is addressed. Attitude kinematics and gyro models including bias models are in general utilized to estimate spacecraft attitude and angular rate. However, a linearized model and a transition matrix are derived in this paper from nonlinear spacecraft dynamics with external disturbances. A Kalman filtering technique is applied and offers relatively high estimation accuracy under dynamic uncertainties. The proposed approach is demonstrated using numerical simulations.

고른 필터를 이용한 인공위성의 자세 추정 (Spacecraft Attitude Estimation by Unscented Filtering)

  • 이현재;최윤혁;방효충;박종오
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.865-872
    • /
    • 2008
  • Spacecraft attitude estimation using the nonlinear unscented filter is addressed to fully utilize capabilities of the unscented transformation. To release significant computational load, an efficient technique is proposed by reasonably removing correlation between random variables. This modification introduces considerable reduction of sigma points and computational burden in matrix square-root calculation for most nonlinear systems. Unscented filter technique makes use of a set of sample points to predict mean and covariance. The general QUEST(QUaternion ESTimator) algorithm preserves explicitly the quaternion normalization, whereas extended Kalman filter(EKF) implicitly obeys the constraint. For spacecraft attitude estimation based on quaternion, an approach to computing quaternion means from sampled quaternions with guarantee of the quaternion norm constraint is introduced applying a constrained optimization technique. Finally, the performance of the new approach is demonstrated using a star tracker and rate-gyro measurements.

가변속 CMG를 장착한 위성의 각속도 추정 및 2축 자세제어 (Angular Speed Estimation and Two-Axis Attitude Control of a Spacecraft Using a Variable-Speed Control Moment Gyroscope)

  • 진재현
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1104-1109
    • /
    • 2010
  • This paper deals with the attitude control of an underactuated spacecraft that has fewer than three actuators. Even though such spacecrafts are known as uncontrollable, restricted missions are possible with controlling two-axis attitude angles. A variable speed control moment gyroscope is considered as an actuator. It is a kind of momentum exchange device and it shows highly nonlinear dynamical properties. Speed commands are generated by kinematic equations represented by Euler angles. A control law, that is designed to make a spacecraft follow the speed commands, is derived by the backstepping method. Angular speeds are estimated from the attitude measurements. Several estimation methods have been compared.

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.24-36
    • /
    • 2011
  • A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulation employs measurements obtained from a vision sensor to provide multiple line(-) of(-) sight vectors from the spacecraft to another spacecraft. The line-of-sight measurements are coupled with gyro measurements and dynamic models in an UKF to determine relative attitude, position and gyro biases. A vector of generalized Rodrigues parameters is used to represent the local error-quaternion between two spacecraft. A multiplicative quaternion-error approach is derived from the local error-quaternion, which guarantees the maintenance of quaternion unit constraint in the filter. The scenario for bounded relative motion is selected to verify this extended application of the UKF. Simulation results show that the UKF is more robust than the EKF under realistic initial attitude and navigation error conditions.

인공위성의 자세결정에 관한 연구 (A study on spacecraft attitude determination)

  • 심규성;송용규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1095-1098
    • /
    • 1996
  • In this work, attitude determination with Inertial Reference Unit as attitude sensor is considered. Usually, the attitude error from IRU increases because of gyro rate bias and noise. Therefore, other attitude sensors(sun sensor, horizon sensor, star tracker) are needed to compensate for error from IRU. In this paper, we use the extended Kalman filter for attitude estimation of spacecraft with IRU and star tracker.

  • PDF

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권1호
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.

Unscented Filtering in a Unit Quaternion Space for Spacecraft Attitude Estimation

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.894-900
    • /
    • 2005
  • A new approach to the straightforward implementation of the unscented filter in a unit quaternion space is proposed for spacecraft attitude estimation. Since the unscented filter is formulated in a vector space and the unit quaternions do not belong to a vector space but lie on a nonlinear manifold, the weighted sum of quaternion samples does not produce a unit quaternion estimate. To overcome this difficulty, a method of weighted mean computation for quaternions is derived in rotational space, leading to a quaternion with unit norm. A quaternion multiplication is used for predicted covariance computation and quaternion update, which makes a quaternion in a filter lie in the unit quaternion space. Since the quaternion process noise increases the uncertainty in attitude orientation, modeling it either as the vector part of a quaternion or as a rotation vector is considered. Simulation results illustrate that the proposed approach successfully estimates spacecraft attitude for large initial errors and high tip-off rates, and modeling the quaternion process noise as a rotation vector is more optimal than handling it as the vector part of a quaternion.

  • PDF

Attitude Estimation for Satellite Fault Tolerant System Using Federated Unscented Kalman Filter

  • Bae, Jong-Hee;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.80-86
    • /
    • 2010
  • We propose a spacecraft attitude estimation algorithm using a federated unscented Kalman filter. For nonlinear spacecraft systems, the unscented Kalman filter provides better performance than the extended Kalman filter. Also, the decentralized scheme in the federated configuration makes a robust system because a sensor fault can be easily detected and isolated by the fault detection and isolation algorithm through a sensitivity factor. Using the proposed algorithm, the spacecraft can continuously perform a given mission despite navigation sensor faults. Numerical simulation is performed to verify the performance of the proposed attitude estimation algorithm.

Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor

  • Mao, Xinyuan;Du, Xiaojing;Fang, Hui
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.91-98
    • /
    • 2013
  • The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter (FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state equation is implemented according to the spacecraft's kinematic attitude model, while the residual error models of GPS and star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors' different update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based on the principle of ${\chi}^2$ residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice malfunctions correctly and effectively.