• Title/Summary/Keyword: spacecraft attitude control

Search Result 176, Processing Time 0.029 seconds

Attitude Control of a Tethered Spacecraft

  • Cho, Sang-Bum;McClamroch, N. Harris
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.67-75
    • /
    • 2007
  • An attitude control problem for a tethered spacecraft is studied. The tethered spacecraft is viewed as a multi-body spacecraft consisting of a base body, a massless tether that connects the base body and an end mass, and tether actuator dynamics. Moments about the pitch and roll axes of the base spacecraft arise by control of the point of attachment of the tether to the base spacecraft. The control objective is to stabilize the attitude of the base spacecraft while keeping the perturbations of the tether small. Analysis shows that linear equations of motion for the tethered spacecraft are not completely controllable. We study two different control design approaches: (1) we decouple the attitude dynamics from the tether dynamics and we design a linear feedback to achieve stabilization of the attitude dynamics, and (2) we decouple the controllable modes from the uncontrollable mode using Kalman decomposition and we design a linear feedback to achieve stabilization of the controllable modes. Simulation results show that, although it is difficult to control the tether, the tether motion can be maintained within an acceptable range while stabilizing the attitude dynamics of the base spacecraft.

Robust attitude control and analysis for 3-axis stabilized spacecraft using sliding mode control (슬라이딩 모드 제어를 이용한 3축 안정화 위성의 자세 제어및 강건성 해석)

  • 신동준;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.692-695
    • /
    • 1997
  • Nonlinear robust attitude controller for 3-axis stabilized spacecraft is designed. Robust stability analysis for nonlinear spacecraft system with disturbance is conducted. External disturbances and parametric uncertainties decrease Spacecraft's attitude pointing accuracy. Sliding Mode Control(SMC) provides stability of system in the face of these disturbances and uncertainties. The concept of quadratic boundedness and quadratic stability are applied to the robust analysis for the nonlinear spacecraft system subject to bounded disturbance torques. Numerical simulation is conducted to compare the analysis result and actual nonlinear simulation. The simulation show that analysis result is valid.

  • PDF

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.257-261
    • /
    • 2001
  • Nonlinear pulse width modulation (PWM) controlled system is considered to achieve control performance of thruster controlled spacecraft. The actual PWM controlled motions occur, very closely, around the average model trajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.461-461
    • /
    • 2000
  • Nonlinear pulse width modulation(PWM) controlled system is considered to achieve control performance of thruster-controlled spacecraft. The actual PWM controlled motions occurs, very closely, around the average model rajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

Development of Hardware-in-the-loop Simulator for Spacecraft Attitude Control using thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.35.3-36
    • /
    • 2008
  • The ground-based spacecraft simulator is a useful tool to realize various space missions and satellite formation flying in the future. Also, the spacecraft simulator can be used to develop and verify new control laws required by modern spacecraft applications. In this research, therefore, Hardware-in-the-loop (HIL) simulator which can be demonstrated the experimental validation of the theoretical results is designed and developed. The main components of the HIL simulator which we focused on are the thruster system to attitude control and automatic mass-balancing for elimination of gravity torques. To control the attitude of the spacecraft simulator, 8 thrusters which using the cold gas (N2) are aligned with roll, pitch and yaw axis. Also Linear actuators are applied to the HIL simulator for automatic mass balancing system to compensate for the center of mass offset from the center of rotation. Addition to the thruster control system and Linear actuators, the HIL simulator for spacecraft attitude control includes an embedded computer (Onboard PC) for simulator system control, Host PC for simulator health monitoring, command and post analysis, wireless adapter for wireless network, rate gyro sensor to measure 3-axis attitude of the simulator, inclinometer to measure horizontality and battery sets to independently supply power only for the simulator. Finally, we present some experimental results from the application of the controller on the spacecraft simulator.

  • PDF

Robust and Optimal Attitude Control Law Design for Spacecraft with Inertia Uncertainties

  • Park, Yon-Mook;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 2002
  • This paper considers the robust and optimal three-axis attitude stabilization of rigid spacecraft with inertia uncertainties. The attitude motion of rigid spacecraft described in terms of either the Cayley-Rodrigues parameters or the Modified Rodrigues parameters is considered. A class of robust nonlinear control laws with relaxed feedback gain structures is proposed for attitude stabilization of rigid spacecraft with inertia uncertainties. Global asymptotic stability of the proposed control laws is shown by using the LaSalle Invariance Principle. The optimality properties of the proposed control laws are also investigated by using the Hamilton-Jacobi theory. A numerical example is given to illustrate the theoretical results presented in this paper.

Numerical analysis of the attitude stability of a charged spacecraft in the Pitch-Roll-Yaw directions

  • Abdel-Aziz, Yehia A.;Shoaib, Muhammad
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, the effect of Lorentz force on the stability of attitude orientation of a charged spacecraft moving in an elliptic orbit in the geomagnetic field is considered. Euler equations are used to derive the equations of attitude motion of a charged spacecraft. The equilibrium positions and its stability are investigated separately in the pitch, roll and yaw directions. In each direction, we use the Lorentz force to identify an attitude stabilization parameter. The analytical methods confirm that we can use the Lorentz force as a stabilization method. The charge-to-mass ratio is the main key of control, in addition to the components of the radius vector of the charged center of the spacecraft, relative to the center of mass of the spacecraft. The numerical results determine stable and unstable equilibrium positions. Therefore, in order to generate optimum charge, which may stabilize the attitude motion of a spacecraft, the amount of charge on the surface of spacecraft will need to be monitored for passive control.

Constructing Nonlinear Sliding Surface for Spacecraft Attitude Control Problems

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.41-44
    • /
    • 1999
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters(MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  • PDF

On the Use of Finite Rotation Angles for Spacecraft Attitude Control

  • Kim, Chang Joo;Hur, Sung Wook;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.300-314
    • /
    • 2017
  • This paper examines finite rotation angle (FRA) applications for spacecraft attitude control. The coordinate transformation matrix and the attitude kinematics represented by FRAs are introduced. The interpolation techniques for the angular orientations are thoroughly investigated using the FRAs and the results are compared to those using traditional methods. The paper proposes trajectory description techniques by using extremely smooth polynomial functions of time, which can describe point-to-point attitude maneuvers in a realizable and accurate manner with the help of unique FRA features. In addition, new controller design techniques using the FRAs are developed by combining the proposed interpolation techniques with a model predictive control framework. The proposed techniques are validated through their attitude control applications for an aggressive point-to-point maneuver. Conclusively, the FRAs provide much more flexibility than quaternions and Euler angles when describing kinematics, generating trajectories, and designing attitude controllers for spacecraft.

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.