• Title/Summary/Keyword: space-time block coding

Search Result 115, Processing Time 0.022 seconds

Novel Approach for Eliminating BER Irreducible Floor in the Enhanced Blind Cyclic Detection for Space-Time Coding

  • Pham, Van-Su;Le, Minh-Tuan;Mai, Linh;Kabir, S.M.Humayun;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.150-153
    • /
    • 2008
  • In the blind Maximum-likelihood (ML) detection for Orthogonal Space-Time Block Codes (OSTBC), the problem of ambiguity in determining the symbols has been a great concern. A possible solution to this problem is to apply semi-blind ML detection, i.e. the blind ML decoding with pilot symbols or training sequence. In order to increase the performance, the number of pilot symbols or length of training sequence should be increased. Unfortunately, this leads to a significantly decrease in system spectral efficiency. This work presents an approach to resolve the aforementioned issue by introducing a new method for constructing transmitted information symbols, in which transmitting information symbols drawn form different modulation constellations. Therefore, the ambiguity can be easily eliminated. In addition, computer simulation is implemented to verify the performance of the proposed approach.

A Simplified Efficient Algorithm for Blind Detection of Orthogonal Space-Time Block Codes

  • Pham, Van Su;Mai, Linh;Lee, Jae-Young;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.261-265
    • /
    • 2008
  • This work presents a simplified efficient blind detection algorithm for orthogonal space-time codes(OSTBC). First, the proposed decoder exploits a proper decomposition approach of the upper triangular matrix R, which resulted from Cholesky-factorization of the composition channel matrix, to form an easy-to-solve blind detection equation. Secondly, in order to avoid suffering from the high computational load, the proposed decoder applies a sub-optimal QR-based decoder. Computer simulation results verify that the proposed decoder allows to significantly reduce computational complexity while still satisfying the bit-error-rate(BER) performance.

Design of New Quasi-Orthogonal Space-Time Block Code with Minimum Decoding Complexity (최소 복호 복잡도를 갖는 새로운 준직교 시중간블록부호 설계)

  • Chae, Chang-Hyeon;Choi, Dae-Won;Jung, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1219-1225
    • /
    • 2007
  • In this paper, we propose a new quasi-orthogonal space-time block code(QO-STBC) achieving full rate and full diversity for general QAM and quasi-static Rayleigh fading channels with four transmit antennas. This code possesses the quasi orthogonal property like the conventional minimum decoding complexity QO-STBC(MDC-QO-STBC), which allows independently a maximum likelihood(ML) decoding to only require joint detection of two real symbols. By computer simulation results, we show that the proposed code exhibits the identical BER performance with the existing MDC-QO-STBC. However, the proposed code has an advantage in the transceiver implementation since the original coding scheme may be modified so that increases of peak-to-average power ratio occur at only two transmit antennas, but the MDC-QO-STBC does at all of transmit antennas.

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

A cooperative virtual MIMO system for moving networks (이동 네트워크를 위한 협력 가상 MIMO 시스템)

  • Kim, Jung-Hyun;Kim, Il-Hwan;You, Cheol-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, we propose a cooperative communication scheme for high transmission efficiency and coverage extension under multipath fading environment of moving networks. The proposed scheme uses a Space-Time Block Code (STBC) for improvement of receiving performance by using virtual Multiple-Input Multiple-Output(MIMO) transmit diversity. It can also achieve faster transmission time than a conventional scheme by using virtual MIMO configurations. Simulation results have shown that the proposed scheme provides SNR improvement and has faster transmission time compared to the conventional scheme, since it can utilize the good properties of spatial diversity and coding gain by using virtual MIMO configuration. In this paper, we propose simulations of UWB communication system to show validity by using the MATLAB.

Improved Super-Orthogonal Space Time Codes for Fast Rayleigh Fading Channels (고속 레일리 페이딩 채널에 적합한 개선된 초직교 시공간 격자 부호)

  • Kim, Chang-Joong;Heo, Seo-Weon;Lee, Ho-Kyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.820-825
    • /
    • 2007
  • Super-orthogonal space-time trellis code (SOTTC) uses the expanded set of the orthogonal space-time block code to obtain coding gain and diversity gain without loss of transmit rate. In SOSTTCs, signal set expansions are performed by rotating the first column of the code matrix. The rotating phases used previously were selected to avoid the signal constellation expansion rather than the performance improvement. In this paper, we make a design criterion to select the proper rotating phase to improve the performance of SOSTTCs for fast Rayleigh fading channels. In addition, we design improved SOSTTCs by using the proper rotating phase. Simulation results are also provided to confirm our SOSTTCs are superior to the previous SOSTTCs in the view of BER performance.

The Layered Receiver Employing Whitening Process for Multiple Space-Time Codes (다중 시공간 부호를 위한 백색화 과정을 이용한 계층화 수신기)

  • Yim Eun Jeong;Kim Dong Ku
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.15-18
    • /
    • 2005
  • Multiple space-time codes (M-STTC) is composed of several space-time codes. That provides high transmission rate as well as diversity and coding gain without bandwidth expansion. In this paper, the layered receiver structures employing whitening process for M-STTC is proposed. The proposed receiver is composed of the decoding order decision block and the layered detection block. The whitening process in the latter is utilized to maximize the receive diversity gain in the layered detection. The layered receiver employing whitening process has more diversity gain and advantage of the required number of receive antenna over the layered detection with MMSE nulling. The proposed scheme achieves a 5dB gain compared to the coded layered space-time processing at the FER of $10^{-2}$.

STBC SC-FDE based on LS-Algorithm for Fixed Broadband Wireless Access System

  • Kim Han Kyong;Hwang Ho Seon;Baik Heung Ki
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.596-599
    • /
    • 2004
  • We propose an Alamouti-like scheme for combining space-time block coding with single-carrier frequency-domain equalization(SC-FDE) in fixed broadband wireless access environment. With two transmit antennas, the scheme is shown to achieve significant diversity gains at low complexity over frequency-selective fading channels

  • PDF

Performance Comparison of SFBC/SFTC-OFDM Systems Under MB-OFDM Interference (MB-OFDM UWB 신호 간섭하에서 SFBC/SFTC-OFDM 시스템들의 성능 비교)

  • Kim, Kyung-Seok;Song, Chang-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.968-975
    • /
    • 2006
  • Research about the mode of MIMO that can get a coding benefit at the same time with a diversity benefit using a multiple antenna at the fading channel for a high-speed data transmission have been processed actively But the analysis about the interference of UWB system comes not to consist yet. So this paper analyzed the performance of the interference of UWB system to SFBC-OFDM and SFTC-OFDM system that applied a space block code which has a space diversity characteristic to OFDM system at MIMO channel. We shelved the performance that SFTC-OFDM system is robuster than SFBC-OFDM system under MB-OFDM UWB Interference.

Receivers for Spatially Multiplexed Space-Time Block Coded Systems : Reduced Complexity (시공간블록부호화를 적용한 공간다중화 시스템 수신기 : 복잡도 감소 방안)

  • Hwang Hyeon Chyeol;Shin Seung Hoon;Lee Cheol Jin;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1244-1252
    • /
    • 2004
  • In this paper, we derive some properties of linear detectors (zero forcing or minimum mean square error) at spatial multiplexing systems with alamouti's space-time block code. Based on the derived properies, this paper proposes low-complexity receivers. Implementing MMSE detector adaptively, the number of weight vectors to be calculated and updated is greatly reduced with the derived properties compared to the conventional methods. In the case of recursive least square algorithm, with the proposed approach computational complexity is reduced to less than the half. We also identify that sorted QR decomposition detector, which reduces the complexity of V-Blast detector, has the same properties for unitary matrix Q and upper triangular matrix R. A complexity reduction of about 50%, for sorted QR decomposition detector, can be achieved by using those properties without the loss of performance.