• Title/Summary/Keyword: space-time block coding(STBC)

Search Result 66, Processing Time 0.016 seconds

Receivers for Spatially Multiplexed Space-Time Block Coded Systems : Reduced Complexity (시공간블록부호화를 적용한 공간다중화 시스템 수신기 : 복잡도 감소 방안)

  • Hwang Hyeon Chyeol;Shin Seung Hoon;Lee Cheol Jin;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1244-1252
    • /
    • 2004
  • In this paper, we derive some properties of linear detectors (zero forcing or minimum mean square error) at spatial multiplexing systems with alamouti's space-time block code. Based on the derived properies, this paper proposes low-complexity receivers. Implementing MMSE detector adaptively, the number of weight vectors to be calculated and updated is greatly reduced with the derived properties compared to the conventional methods. In the case of recursive least square algorithm, with the proposed approach computational complexity is reduced to less than the half. We also identify that sorted QR decomposition detector, which reduces the complexity of V-Blast detector, has the same properties for unitary matrix Q and upper triangular matrix R. A complexity reduction of about 50%, for sorted QR decomposition detector, can be achieved by using those properties without the loss of performance.

Performance Comparison of Space-Time Block Coding in High-speed Railway Channel (고속 철도 채널 환경에서 시공간 블록 부호 성능 비교)

  • Park, Seong-Guen;Lee, Jong-Woo;Jeon, Taehyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.291-297
    • /
    • 2014
  • Due to the rapid increase in demand for transportation of human and freight in modern railway systems, the CBTC system has been proposed, which is the solution for improvement of the line capacity that has been limited by the conventional track circuit based train control system. In the CBTC system, higher reliability of the communication system should be guaranteed for the safety of passengers and trains. However, due to the inherent characteristics of the wireless channel environment, performance degradations are inevitable. The diversity techniques can increase the reliability of data transmission using multiple antennas. In this paper, we investigate the performance of the STBC in the railway channel environment. Rician fading model is used for the viaduct scenarios which take important roles in the railway system. Also, considered is the Doppler effect which is an important factor in the mobile communication system. Simulations are performed to analyze the performance of the STBC in various channel environments. Results show that the performance degradation due to the phase error in viaduct scenarios is independent of the diversity order but is affected by the constellation of the modulation.

Blind Adaptive Receiver based on Constant Modulus for Downlink MC-CDMA Systems (하향링크 MC-CDMA 시스템을 위한 CM 기반의 블라인드 적응 수신기)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.47-54
    • /
    • 2019
  • In this paper, we consider a constant modulus (CM) based blind adaptive receiver design for downlink multi-carrier code-division multiple access (MC-CDMA) systems employing simple space-time block coding (STBC). In the paper, filter weight vectors used for the detection of the transmitted symbols are partitioned into its subvectors and then, special relations among the optimal subvectors minimizing the CM metric are derived. Using the special relations, we present a modified CM metric and propose a new blind adaptive stochastic-gradient CM algorithm (SG-CMA) by minimizing the modified CM metric. The proposed blind adaptive SG-CMA has faster convergence rate than the conventional SG-CMA because the filter weight vectors of the proposed scheme are updated in the region of satisfying the derived special relations. Computer simulation results are given to verify the superiority of the proposed SG-CMA.

Turbo-coded STC schemes for an integrated satellite-terrestrial system for cooperative diversity (협동 다이버시티 이득을 위한 위성-지상간 통합망에서의 터보 부호화된 시공간 부호)

  • Park, Un-Hee;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.62-70
    • /
    • 2010
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding (STC) can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction schemes. Based on these previous study results, we present various cooperative diversity techniques by combining STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

An LDC-based MU-MIMO System with Pre-coding for Interference Cancellation and Robust Reception (간섭 제거와 수신 성능 향상을 위한 전처리기법을 적용한 LDC기반의 다중 사용자 다중 입출력 시스템)

  • Park, Myung Chul;Jo, Bong-Gyun;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper, a coding algorithm is proposed for multi-user multi-input multi-output (MU-MIMO) systems to improve the reception performance in fading conditions without reducing the bandwidth efficiency. The space division multiple access (SDMA) scheme that is one of the commonly used for MU-MIMO systems is vulnerable to the fading. The space time block code (STBC) scheme that is used to overcome the fading has a disadvantage of reduced throughput. The proposed MU-MIMO system first encodes transmitted symbols by linear dispersion code (LDC) which is less vulnerable to the fading and increases the throughput in proportional to the number of transmit antennas. Then, the LDC coded symbols are pre-coded by the result of singular value decomposition (SVD) of the estimated channel gain. We evaluate the performance of the proposed scheme compared with the conventional algorithms by computer simulations.

Multi-Parameter Based Scheduling for Multi-user MIMO Systems

  • Chanthirasekaran, K.;Bhagyaveni, M.A.;Parvathy, L. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2406-2412
    • /
    • 2015
  • Multi-user multi-input multi-output (MU-MIMO) system has attracted the 4th generation wireless network as one of core technique for performance enrichment. In this system rate control is a challenging problem and another problem is optimization. Proper scheduling can resolve these problems by deciding which set of user and at which rate the users send their data. This paper proposes a new multi-parameter based scheduling (MPS) for downlink multi-user multiple-input multiple-output (MU-MIMO) system under space-time block coding (STBC) transmissions. Goal of this MPS scheme is to offer improved link level performance in terms of a low average bit error rate (BER), high packet delivery ratio (PDR) with improved resource utilization and service fairness among the user. This scheme allows the set of users to send data based on their channel quality and their demand rates. Simulation compares the MPS performance with other scheduling scheme such as fair scheduling (FS), normalized priority scheduling (NPS) and threshold based fair scheduling (TFS). The results obtained prove that MPS has significant improvement in average BER performance with improved resource utilization and fairness as compared to the other scheduling scheme.