• Title/Summary/Keyword: space truss structures

Search Result 121, Processing Time 0.029 seconds

An Analysis of Mechanical Features and Variations of Design Composition Elements for Pratt Trusses (프랫트러스의 디자인 구성요소 변화와 역학적 특성분석)

  • Park, Chan-Soo;Lee, Ju-Na
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.47-55
    • /
    • 2013
  • The design composition elements and the mechanical behavior of trusses have been investigated for Pratt trusses. As a result, it was determined that the design composition elements of the trusses consist of the composition of webs, the distance between joints, the chords profile, the depth of the truss, and the double chord composition. In addition, by analyzing models with a variation of elements, comprehensive features of structural behavior have been presented for variations of design of Pratt trusses. This is to provide more effective and useful design information on truss structure in the architectural and structural planning stage.

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Discrete Optimum Design of Space Truss Structures Using Genetic Algorithms

  • Park, Choon Wook;Kang, Moon Myung
    • Architectural research
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • The objective of this study is the development of discrete optimum design algorithms which is based on the genetic algorithms. The developed algorithms was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses structures and the constraints are stresses and displacements. This study solves the problem by introducing the genetic algorithms. The genetic algorithms consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed discrete optimum design algorithms was verified by applying the algorithms to optimum design examples.

Mechanism and Behavior Characteristic of Space Truss Unit for Post-tensioning

  • Kim, Jin-Woo;Kim, Sang-Jin
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.38-43
    • /
    • 2003
  • This paper presents the results of a post-tensioning test and analysis of a pyramidal unit structure that is basic element for space structures. The behavior characteristics was analyzed and compared with the numerical analysis and the mechanism in test model was confirmed with geometrical analysis. The results of this paper show that the behaviors of space structures can be predicted in multi-directional Mero joint system. And the authors suggest the possibility of erection and shaping formation with comparatively small post-tensioning, and space structure with the mechanism should consider the nonlinear behavior due to large deformation.

  • PDF

Optimum Structural Design of Space truss with consideration in Snap-through buckling (뜀-좌굴을 고려한 공간 트러스의 최적구조설계에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae;Choi, Jae-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 2012
  • This study investigates the optimum structural design of space truss considering global buckling, and is to obtain the minimal weight of the structure. The mathematical programming method is used for optimization of each member by member force. Besides, dynamic programming method is adapted for consideration in snap-through buckling. The mathematical modeling for optimum design of truss members consists of objective function of total weight and constrain equations of allowable tensile (or compressive) stress and slenderness. The tangential stiffness matrix is examined to find the critical point on equilibrium path, and a ratio of the buckling load to design load is reflected in iteration procedures of dynamic programming method to adjust the stiffness of space truss. The star dome is examined to verify the proposed optimum design processor. The numerical results of the model are conversed well and satisfied all constrains. This processor is a relatively simple method to carry out optimum design with consideration in global buckling, and is viable in practice with respect to structural design.

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

Truss structure damage identification using residual force vector and genetic algorithm

  • Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.485-496
    • /
    • 2017
  • In this paper, damage detection has been introduced as an optimization problem and a two-step method has been proposed that can detect the location and severity of damage in truss structures precisely and reduce the volume of computations considerably. In the first step, using the residual force vector concept, the suspected damaged members are detected which will result in a reduction in the number of variables and hence a decrease in the search space dimensions. In the second step, the precise location and severity of damage in the members are identified using the genetic algorithm and the results of the first step. Considering the reduced search space, the algorithm can find the optimal points (i.e. the solution for the damage detection problem) with less computation cost. In this step, the Efficient Correlation Based Index (ECBI), that considers the structure's first few frequencies in both damaged and healthy states, is used as the objective function and some examples have been provided to check the efficiency of the proposed method; results have shown that the method is innovatively capable of detecting damage in truss structures.

Stability Evaluation of Earth Retaining Structure using Tower Truss System (새로운 무지보 흙막이 공법의 안정성 평가)

  • Kim, Young-Seok;Kim, Ju-Hyong;Kim, Young-Nam;Kim, Seong-Hwan;Lee, Sung-Reol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1324-1329
    • /
    • 2009
  • Needs for underground space development and utilization have been increasing in urban area. The conventional strutting method in excavation is effective to restrain the ground movements and displacements of earth structures but inefficient for workers because of small working space. The conventional earth reinforcement methods such as earth-anchor and soil-nailing also have limitation to apply in urban area due to threats to stability of adjacent buildings around excavation boundaries. Recently, many types of earth retaining structures are being developed to overcome disadvantages of conventional excavation methods in urban area. In this study, a series of numerical analyses were performed with MIDAS GTS, geotechnical analysis program and MIDAS Civil, structural analysis design program to evaluate behavior and stability of the new type of non-supporting earth retaining structure, called Temporary Tower System (TTS), consisting of tower truss structures with much economical and spatial advantage.

  • PDF

Optimization of a telescope movable support structure by means of Volumetric Displacements

  • Ortega, Nestor F.;Robles, Sandra I.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.393-405
    • /
    • 2009
  • The Purpose of this paper is to show the applicability of a methodology, developed by the authors, with which to perform the mechanical optimization of space truss structures strongly restricted. This methodology use a parameter call "Volumetric Displacement", as the Objective Function of the optimization process. This parameter considers altogether the structure weight and deformation whose effects are opposed. The Finite Element Method is employed to calculate the stress/strain state and the natural frequency of the structure through a structural linear static and natural frequency analysis. In order to show the potentially of this simple methodology, its application on a large diameter telescope structure (10 m) considering the strongly restriction that became of its use, is presented. This methodology, applied in previous works on continuous structures, such as shell roof and fluid storage vessels, is applied in this case to a space truss structure, with the purpose of generalize its applicability to different structural topology. This technique could be useful in the morphology design of deployable and retractable roof structures, whose use has extensively spread in the last years.