• Title/Summary/Keyword: space search optimization algorithm

Search Result 167, Processing Time 0.023 seconds

Quantum Bacterial Foraging Optimization for Cognitive Radio Spectrum Allocation

  • Li, Fei;Wu, Jiulong;Ge, Wenxue;Ji, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.564-582
    • /
    • 2015
  • This paper proposes a novel swarm intelligence optimization method which integrates bacterial foraging optimization (BFO) with quantum computing, called quantum bacterial foraging optimization (QBFO) algorithm. In QBFO, a multi-qubit which can represent a linear superposition of states in search space probabilistically is used to represent a bacterium, so that the quantum bacteria representation has a better characteristic of population diversity. A quantum rotation gate is designed to simulate the chemotactic step for the sake of driving the bacteria toward better solutions. Several tests are conducted based on benchmark functions including multi-peak function to evaluate optimization performance of the proposed algorithm. Numerical results show that the proposed QBFO has more powerful properties in terms of convergence rate, stability and the ability of searching for the global optimal solution than the original BFO and quantum genetic algorithm. Furthermore, we examine the employment of our proposed QBFO for cognitive radio spectrum allocation. The results indicate that the proposed QBFO based spectrum allocation scheme achieves high efficiency of spectrum usage and improves the transmission performance of secondary users, as compared to color sensitive graph coloring algorithm and quantum genetic algorithm.

Shape Optimization of Damaged Columns Subjected to Conservative and Non-Conservative Forces

  • Jatav, S.K.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.20-31
    • /
    • 2014
  • This paper deals with the development of a realistic shape optimization of damaged columns that are subjected to conservative and non-conservative forces, using the Genetic Algorithm (GA). The analysis is based on the design of the most optimized shape of the column under the constraint of constant weight, considering the Static, Vibrational, and Flutter characteristics. Under the action of conservative and non-conservative longitudinal forces, an elastic column loses its stability. A numerical analysis based on FEM has been performed on a uniform damaged column, to compute the fundamental buckling load, vibration frequency, and flutter load, under various end restraints. An optimization search based on the Genetic Algorithm is then executed, to find the optimal shape design of the column. The optimized column references the one having the highest buckling load, highest vibration frequency, and highest flutter load, among all the possible shapes of the column, for a given volume. A comparison is then made between the values obtained for the optimized damaged column, and those obtained for the optimized undamaged column. The comparison reveals that the incorporation of damage in the column alters its optimal shape to only a certain extent. Also, the critical load and frequency values for the optimized damaged column are comparatively low, compared with those obtained for the optimized undamaged column. However, these results hold true only for moderate-intensity damage cases. For high intensity damage, the optimal shape may not remain the same, and may vary, according to the severity of damage.

Comparative Study on Dimensionality and Characteristic of PSO (PSO의 특징과 차원성에 관한 비교연구)

  • Park Byoung-Jun;Oh Sung-Kwun;Kim Yong-Soo;Ahn Tae-Chon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.328-338
    • /
    • 2006
  • A new evolutionary computation technique, called particle swarm optimization(PSO), has been proposed and introduced recently. PSO has been inspired by the social behavior of flocking organisms, such as swarms of birds and fish schools and PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. In this paper, characteristics of PSO such as mentioned are reviewed and compared with GA which is based on the evolutionary mechanism in natural selection. Also dimensionalities of PSO and GA are compared throughout numeric experimental studies. The comparative studies demonstrate that PSO is characterized as simple in concept, easy to implement, and computationally efficient and can generate a high-quality solution and stable convergence characteristic than GA.

Active Contour Based Edge Detection Using Evolutionary Computation (진화 연산을 이용한 능동외곽기반의 윤곽선검출에 관한 연구)

  • Kang, Hyeon-Tae;Cho, Deok-Hwan;Hwang, Gi-Hyun;Mun, Kyeong-Jun;Park, June-Ho;Lee, Hwa-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2405-2407
    • /
    • 2001
  • In this paper, we apply and evolutionary computation(EC), probabilistic optimization algorithm, to active contour. A number of problems exist associated with such as algorithm initialization, existence of local minima, non-convex search space, and the selection of model parameters in conventional models. We propose an adequate fitness function for these problems. The determination of fitness function adequate to active contour using EC is important in search capability. As a result of applying the proposed method to non-convex object shape, we improve the unstability and contraction phenomena, in nature, of snake generated in deformable contour optimization.

  • PDF

Vision Based Position Control of a Robot Manipulator Using an Elitist Genetic Algorithm (엘리트 유전 알고리즘을 이용한 비젼 기반 로봇의 위치 제어)

  • Park, Kwang-Ho;Kim, Dong-Joon;Kee, Seok-Ho;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.119-126
    • /
    • 2002
  • In this paper, we present a new approach based on an elitist genetic algorithm for the task of aligning the position of a robot gripper using CCD cameras. The vision-based control scheme for the task of aligning the gripper with the desired position is implemented by image information. The relationship between the camera space location and the robot joint coordinates is estimated using a camera-space parameter modal that generalizes known manipulator kinematics to accommodate unknown relative camera position and orientation. To find the joint angles of a robot manipulator for reaching the target position in the image space, we apply an elitist genetic algorithm instead of a nonlinear least square error method. Since GA employs parallel search, it has good performance in solving optimization problems. In order to improve convergence speed, the real coding method and geometry constraint conditions are used. Experiments are carried out to exhibit the effectiveness of vision-based control using an elitist genetic algorithm with a real coding method.

The Optimum Design of Spatial Structures by TABU Algorithm (터부 알고리즘에 의한 대공간 구조물의 최적설계)

  • 한상을;이상주;조용원;김민식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.171-178
    • /
    • 2004
  • The purpose of optimum design for structures is to minimize the cost and to obtain the reasonable structural systems. This design algorithm have many objective functions including discrete variables as sections, weight, stiffness and shapes. Simulated annealing, Genetic algorithm and TABU algorithm are used search for these optimum values in the structural design. TABU algorithm is applied to many types structures to search for section and distribution optimization and compared with the results of Genetic algorithm for evaluating the efficiency of this algorithm. In this paper, the plane truss of 10 elements and the space truss of 25 element having 10 nodes, star dome and cable dome are analyzed as analytical models.

  • PDF

Design of Genetic Algorithm-based Parking System for an Autonomous Vehicle

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.275-280
    • /
    • 2009
  • A Genetic Algorithm (GA) is a kind of search techniques used to find exact or approximate solutions to optimization and searching problems. This paper discusses the design of a genetic algorithm-based intelligent parking system. This is a search strategy based on the model of evolution to solve the problem of parking systems. A genetic algorithm for an optimal solution is used to find a series of optimal angles of the moving vehicle at a parking space autonomously. This algorithm makes the planning simpler and the movement more effective. At last we present some simulation results.

On a New Evolutionary Algorithm for Network Optimization Problems (네트워크 문제를 위한 새로운 진화 알고리즘에 대하여)

  • Soak, Sang-Moon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.2
    • /
    • pp.109-121
    • /
    • 2007
  • This paper focuses on algorithms based on the evolution, which is applied to various optimization problems. Especially, among these algorithms based on the evolution, we investigate the simple genetic algorithm based on Darwin's evolution, the Lamarckian algorithm based on Lamark's evolution and the Baldwin algorithm based on the Baldwin effect and also Investigate the difference among them in the biological and engineering aspects. Finally, through this comparison, we suggest a new algorithm to find more various solutions changing the genotype or phenotype search space and show the performance of the proposed method. Conclusively, the proposed method showed superior performance to the previous method which was applied to the constrained minimum spanning tree problem and known as the best algorithm.

Improvements of pursuit performance using episodic parameter optimization in probabilistic games (에피소드 매개변수 최적화를 이용한 확률게임에서의 추적정책 성능 향상)

  • Kwak, Dong-Jun;Kim, H.-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.215-221
    • /
    • 2012
  • In this paper, we introduce an optimization method to improve pursuit performance of a pursuer in a pursuit-evasion game (PEG). Pursuers build a probability map and employ a hybrid pursuit policy which combines the merits of local-max and global-max pursuit policies to search and capture evaders as soon as possible in a 2-dimensional space. We propose an episodic parameter optimization (EPO) algorithm to learn good values for the weighting parameters of a hybrid pursuit policy. The EPO algorithm is performed while many episodes of the PEG are run repeatedly and the reward of each episode is accumulated using reinforcement learning, and the candidate weighting parameter is selected in a way that maximizes the total averaged reward by using the golden section search method. We found the best pursuit policy in various situations which are the different number of evaders and the different size of spaces and analyzed results.

Optimization and Verification of Parameters Used in Successive Zooming Genetic Algorithm (순차적 주밍 유전자 알고리즘 기법에 사용되는 파라미터의 최적화 및 검증)

  • KWON YOUNG-DOO;KWON HYUN-WOOK;KIM JAE-YONG;JIN SEUNG-BO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.29-35
    • /
    • 2004
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is proposed for identifying a global solution, using continuous zooming factors for optimization problems. In order to improve the local fine-tuning of the GA, we introduced a new method whereby the search space is zoomed around the design variable with the best fitness per 100 generation, resulting in an improvement of the convergence. Furthermore, the reliability of the optimized solution is determined based on the theory of probability, and the parameter used for the successive zooming method is optimized. With parameter optimization, we can eliminate the time allocated for deciding parameters used in SZGA. To demonstrate the superiority of the proposed theory, we tested for the minimization of a multiple function, as well as simple functions. After testing, we applied the parameter optimization to a truss problem and wicket gate servomotor optimization. Then, the proposed algorithm identifies a more exact optimum value than the standard genetic algorithm.