• Title/Summary/Keyword: space search optimization algorithm

Search Result 167, Processing Time 0.022 seconds

A Study for searching optimized combination of Spent light water reactor fuel to reuse as heavy water reactor fuel by using evolutionary algorithm (진화 알고리즘을 이용한 경수로 폐연료의 중수로 재사용을 위한 최적 조합 탐색에 관한 연구)

  • 안종일;정경숙;정태충
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1997
  • These papers propose an evolutionary algorithm for re-using output of waste fuel of light water reactor system in nuclear power plants. Evolutionary algorithm is useful for optimization of the large space problem. The wastes contain several re-useable elements, and they should be carefully selected and blended to satisfy requirements as input material to the heavy water nuclear reactor system. This problem belongs to a NP-hard like the 0/1 Knapsack problem. Two evolutionary strategies are used as a, pp.oximation algorithms in the highly constrained combinatorial optimization problem. One is the traditional strategy, using random operator with evaluation function, and the other is heuristic based search that uses the vector operator reducing between goal and current status. We also show the method, which performs the feasible teat and solution evaluation by using the vectorized data in problem. Finally, We compare the simulation results of using random operator and vector operator for such combinatorial optimization problems.

  • PDF

Crack identification in beam-like structures using multi-mass system and wavelet transform

  • Siamak Ghadimi;Seyed Sina Kourehli;Gholamreza Zamani-Ahari
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.263-283
    • /
    • 2024
  • This research introduces a new composite system that utilizes multiple moving masses to identify cracks in structures resembling beams. The process starts by recording displacement time data from a set of these moving masses and converting this information into a relative time history through weighted aggregation. This relative time history then undergoes wavelet transform analysis to precisely locate cracks. Following wavelet examinations, specific points along the beam are determined as potential crack sites. These points, along with locations on the beam susceptible to cracked point due to support conditions, are marked as crack locations within the optimization algorithm's search domain. The model uses equations of motion based on the finite element method for the moving masses on the beam and employs the Runge-Kutta numerical solution within the state space. The proposed system consists of three successive moving masses positioned at even intervals along the beam. To assess its effectiveness, the method is tested on two examples: a simply supported beam and a continuous beam, each having three scenarios to simulate the presence of one or multiple cracks. Additionally, another example investigates the influence of mass speed, spacing between masses, and noise effect. The outcomes showcase the method's effectiveness and efficiency in localizing crack, even in the presence of noise effect in 1%, 5% and 20%.

Vector Heuristic into Evolutionary Algorithms for Combinatorial Optimization Problems (진화 알고리즘에서의 벡터 휴리스틱을 이용한 조합 최적화 문제 해결에 관한 연구)

  • Ahn, Jong-Il;Jung, Kyung-Sook;Chung, Tae-Choong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1550-1556
    • /
    • 1997
  • In this paper, we apply the evolutionary algorithm to the combinatorial optimization problem. Evolutionary algorithm useful for the optimization of the large space problem. This paper propose a method for the reuse of wastes of light water in atomic reactor system. These wastes contain several reusable elements, and they should be carefully selected and blended to satisfy requirements as an input material to the heavy water atomic reactor system. This problem belongs to an NP-hard like the 0/1 knapsack problem. Two evolutionary strategies are used as approximation algorithms in the highly constrained combinatorial optimization problem. One is the traditional strategy, using random operator with evaluation function, and the other is heuristic based search that uses the vector operator reducing between goal and current status. We also show the method which perform the feasible test and solution evaluation by using the vectored knowledge in problem domain. Finally, We compare the simulation results of using random operator and vector operator for such combinatorial optimization problems.

  • PDF

Non-Metric Multidimensional Scaling using Simulated Annealing (담금질을 사용한 비계량 다차원 척도법)

  • Lee, Chang-Yong;Lee, Dong-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.648-653
    • /
    • 2010
  • The non-metric multidimensional scaling (nMDS) is a method for analyzing the relation among objects by mapping them onto the Euclidean space. The nMDS is useful when it is difficult to use the concept of distance between pairs of objects due to non-metric dissimilarities between objects. The nMDS can be regarded as an optimization problem in which there are many local optima. Since the conventional nMDS algorithm utilizes the steepest descent method, it has a drawback in that the method can hardly find a better solution once it falls into a local optimum. To remedy this problem, in this paper, we applied the simulated annealing to the nMDS and proposed a new optimization algorithm which could search for a global optimum more effectively. We examined the algorithm using benchmarking problems and found that improvement rate of the proposed algorithm against the conventional algorithm ranged from 0.7% to 3.2%. In addition, the statistical hypothesis test also showed that the proposed algorithm outperformed the conventional one.

Adaptive Truncation technique for Constrained Multi-Objective Optimization

  • Zhang, Lei;Bi, Xiaojun;Wang, Yanjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5489-5511
    • /
    • 2019
  • The performance of evolutionary algorithms can be seriously weakened when constraints limit the feasible region of the search space. In this paper we present a constrained multi-objective optimization algorithm based on adaptive ε-truncation (ε-T-CMOA) to further improve distribution and convergence of the obtained solutions. First of all, as a novel constraint handling technique, ε-truncation technique keeps an effective balance between feasible solutions and infeasible solutions by permitting some excellent infeasible solutions with good objective value and low constraint violation to take part in the evolution, so diversity is improved, and convergence is also coordinated. Next, an exponential variation is introduced after differential mutation and crossover to boost the local exploitation ability. At last, the improved crowding density method only selects some Pareto solutions and near solutions to join in calculation, thus it can evaluate the distribution more accurately. The comparative results with other state-of-the-art algorithms show that ε-T-CMOA is more diverse than the other algorithms and it gains better in terms of convergence in some extent.

The configuration Optimization of Truss Structure (트러스 구조물의 형상최적화에 관한 연구)

  • Lim, Youn Su;Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.123-134
    • /
    • 2004
  • In this research, a multilevel decomposition technique to enhance the efficiency of the configuration optimization of truss structures was proposed. On the first level, the nonlinear programming problem was formulated considering cross-sectional areas as design variables, weight, or volume as objective function and behavior under multiloading condition as design constraint. Said nonlinear programming problem was transformed into a sequential linear programming problem. which was effective in calculation through the approximation of member forces using behavior space approach. Such approach has proven to be efficient in sensitivity analysis and different form existing shape optimization studies. The modified method of feasible direction (MMFD) was used for the optimization process. On the second level, by treating only shape design variables, the optimum problem was transformed into and unconstrained optimal design problem. A unidirectional search technique was used. As numerical examples, some truss structures were applied to illustrate the applicability. and validity of the formulated algorithm.

Opitmal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm (유전자 알고리즘을 이용한 닐센아치교의 최적설계기법)

  • Lee, Kwang Su;Chung, Young Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.361-373
    • /
    • 2009
  • Using the genetic algorithm, the optimal-design technique of the Nielsen arch bridge was proposed in this paper. The design parameters were the arch-rise ratio and the steel weight ratio of the Nielsen arch bridge, and optimal-design techniques were utilized to analyze the behavior of the bridge. The optimal parameter values were determined for the estimated optimal level. The parameter determination requires the standardization of the safety, utility, and economic concepts as the critical factors of a structure. For this, a genetic algorithm was used, whose global-optimal-solution search ability is superior to the optimization technique, and whose object function in the optimal design is the total weight of the structure. The constraints for the optimization were displacement, internal stress, and time and space. The structural analysis was a combination of the small displacement theory and the genetic algorithm, and the runtime was reduced for parallel processing. The optimal-design technique that was developed in this study was employed and deduced using the optimal arch-rise ratio, steel weight ratio, and optimal-design domain. The optimal-design technique was presented so it could be applied in the industry.

Genetic Design of Granular-oriented Radial Basis Function Neural Network Based on Information Proximity (정보 유사성 기반 입자화 중심 RBF NN의 진화론적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.436-444
    • /
    • 2010
  • In this study, we introduce and discuss a concept of a granular-oriented radial basis function neural networks (GRBF NNs). In contrast to the typical architectures encountered in radial basis function neural networks(RBF NNs), our main objective is to develop a design strategy of GRBF NNs as follows : (a) The architecture of the network is fully reflective of the structure encountered in the training data which are granulated with the aid of clustering techniques. More specifically, the output space is granulated with use of K-Means clustering while the information granules in the multidimensional input space are formed by using a so-called context-based Fuzzy C-Means which takes into account the structure being already formed in the output space, (b) The innovative development facet of the network involves a dynamic reduction of dimensionality of the input space in which the information granules are formed in the subspace of the overall input space which is formed by selecting a suitable subset of input variables so that the this subspace retains the structure of the entire space. As this search is of combinatorial character, we use the technique of genetic optimization to determine the optimal input subspaces. A series of numeric studies exploiting some nonlinear process data and a dataset coming from the machine learning repository provide a detailed insight into the nature of the algorithm and its parameters as well as offer some comparative analysis.

Feature Selection via Embedded Learning Based on Tangent Space Alignment for Microarray Data

  • Ye, Xiucai;Sakurai, Tetsuya
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.121-129
    • /
    • 2017
  • Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.

Crack Identification Based on Synthetic Artificial Intelligent Technique (통합적 인공지능 기법을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.