• Title/Summary/Keyword: space requirement

Search Result 552, Processing Time 0.026 seconds

Design Space Exploration of Embedded Many-Core Processors for Real-Time Fire Feature Extraction (실시간 화재 특징 추출을 위한 임베디드 매니코어 프로세서의 디자인 공간 탐색)

  • Suh, Jun-Sang;Kang, Myeongsu;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.1-12
    • /
    • 2013
  • This paper explores design space of many-core processors for a fire feature extraction algorithm. This paper evaluates the impact of varying the number of cores and memory sizes for the many-core processor and identifies an optimal many-core processor in terms of performance, energy efficiency, and area efficiency. In this study, we utilized 90 samples with dimensions of $256{\times}256$ (60 samples containing fire and 30 samples containing non-fire) for experiments. Experimental results using six different many-core architectures (PEs=16, 64, 256, 1,024, 4,096, and 16,384) and the feature extraction algorithm of fire indicate that the highest area efficiency and energy efficiency are achieved at PEs=1,024 and 4,096, respectively, for all fire/non-fire containing movies. In addition, all the six many-core processors satisfy the real-time requirement of 30 frames-per-second (30 fps) for the algorithm.

Accelerating GPU-based Volume Ray-casting Using Brick Vertex (브릭 정점을 이용한 GPU 기반 볼륨 광선투사법 가속화)

  • Chae, Su-Pyeong;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Recently, various researches have been proposed to accelerate GPU-based volume ray-casting. However, those researches may cause several problems such as bottleneck of data transmission between CPU and GPU, requirement of additional video memory for hierarchical structure and increase of processing time whenever opacity transfer function changes. In this paper, we propose an efficient GPU-based empty space skipping technique to solve these problems. We store maximum density in a brick of volume dataset on a vertex element. Then we delete vertices regarded as transparent one by opacity transfer function in geometry shader. Remaining vertices are used to generate bounding boxes of non-transparent area that helps the ray to traverse efficiently. Although these vertices are independent on viewing condition they need to be reproduced when opacity transfer function changes. Our technique provides fast generation of opaque vertices for interactive processing since the generation stage of the opaque vertices is running in GPU pipeline. The rendering results of our algorithm are identical to the that of general GPU ray-casting, but the performance can be up to more than 10 times faster.

Performance Evaluation of Channel Estimation for WCDMA Forward Link with Space-Time Block Coding Transmit Diversity (시공간 블록 부호 송신 다이버시티를 적용한 WCDMA 하향 링크에서 채널 추정기의 성능 평가)

  • 강형욱;이영용;김용석;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6A
    • /
    • pp.341-350
    • /
    • 2003
  • In this paper, we evaluate the performance of a moving average (MA) channel estimation filter when space-time block coding transmit diversity (STBC-TD) is applied to the wideband direct sequence code division multiple access (WCDMA) forward link. And we present the infinite impulse response (IIR) filter scheme that can reduce the required memory buffer and the channel estimation delay time. This paper also compares the performance between MA filter scheme and IIR filter scheme in various Rayleigh fading channel environments through the bit error rate (BER) and the frame error rate (FER). Extensive computer simulation results show that transmission with STBC-TD provides a significant gain in performance over no transmit diversity technique, particularly at pedestrian speeds. If STBC-TD technique is employed in the channel estimator based on MA filter, it provides considerable performance gains against Rayleigh fading and reduces the optimum filter tap number. Consequently, the channel estimation delay time and the complexity of the receiver are reduced. In addition, the channel estimator based on IIR filter has the advantages such as little memory requirement and no delay time compared to the MA scheme. However, IIR filter coefficients is very sensitive to the mobile speed change and it exerts a serious influence upon the performance. For that reason, it is important to set uP the optimum IIR filter coefficients.

An Adaptive Grid-based Clustering Algorithm over Multi-dimensional Data Streams (적응적 격자기반 다차원 데이터 스트림 클러스터링 방법)

  • Park, Nam-Hun;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.733-742
    • /
    • 2007
  • A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Due to this reason, memory usage for data stream analysis should be confined finitely although new data elements are continuously generated in a data stream. To satisfy this requirement, data stream processing sacrifices the correctness of its analysis result by allowing some errors. The old distribution statistics are diminished by a predefined decay rate as time goes by, so that the effect of the obsolete information on the current result of clustering can be eliminated without maintaining any data element physically. This paper proposes a grid based clustering algorithm for a data stream. Given a set of initial grid cells, the dense range of a grid cell is recursively partitioned into a smaller cell based on the distribution statistics of data elements by a top down manner until the smallest cell, called a unit cell, is identified. Since only the distribution statistics of data elements are maintained by dynamically partitioned grid cells, the clusters of a data stream can be effectively found without maintaining the data elements physically. Furthermore, the memory usage of the proposed algorithm is adjusted adaptively to the size of confined memory space by flexibly resizing the size of a unit cell. As a result, the confined memory space can be fully utilized to generate the result of clustering as accurately as possible. The proposed algorithm is analyzed by a series of experiments to identify its various characteristics

A Study on the Control of Hazard Facilities Management system in Urban area by utilizing GIS (지리정보시스템(GIS)을 이용한 도심지 내의 위해시설 관리시스템 구축에 관한 연구)

  • Ham, Eun-Gu;Roh, Sam-Kew
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.9-15
    • /
    • 2005
  • This research developed the RMIS(Risk Management Information System) which focus on works of risk management fields required of apply of a space information, and focus on the DB to establish and apply the space information efficiently with research scope on the LPG refueling station in city. On the basis of the RMIS, this research provides the baseline to lead on an efficiency of safety inspection of LPG refueling station, advance risk assessment, and efficient making decision of an accident correspondence assessment with interlocking the GIS representing risk through the automation of a quantitative risk assessment standardize requirement to control at real-time. The RMIS development process is as follows. firstly, Relational Database(RDB) was developed by using fundamental data both On-site and Off-site relating data as peforming risk assessment on the LPG refueling station in city. Second, the risk management integral database system was developed to monitor and control the risk efficiently for user with using the Visual Basic Program. Third, through interlocking the risk management integral database system and the GIS(Falcon-map) was suggested the decision making method. Represented results through out the RMIS program development are as follows. Firstly, the RMIS was established the mutual information to advance management the risk efficiently for user and inspector with using the risk management data. Second, as this study managed risk for on-site and off-site separately and considered effect for inside and outside of facility, constructed the basis on safety management which can respond to major accident. Third, it was composed the baseline to making decision that on the basis of user interface.

Thermal Design of Electronic for Controlling X-band Antenna of Compact Advanced Satellite (차세대 중형위성 탑재 X-밴드 안테나 구동용 전자유닛 APD 열설계 및 열해석)

  • Kim, Hye-In;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • The APD (Antenna Pointing Driver) is an electronic equipment tool that is used to drive the two-axis gimbal-type antenna for the image data transmission of CAS (Compact Advanced Satellite). In this study, a heat dissipation of EEE (Electrical, Electronic and Electromechanical) is reviewed, to identify the parts that directly affected its efficiency, lifetime as well as the reliability of the structure. This event eventually incurs a failure of the EEE part itself, or even the entire satellite system as noted in experiments in this case. To guarantee reliability of electronic equipment during the mission, the junction temperature of EEE parts is considered a significant and important design factor, and subsequently must be secured within the allowable range. Therefore, the notation of the thermal analysis considering the derating is indispensable, and a proper thermal mathematical model should be constructed for this case. In this study, the thermal design and thermal analysis are performed to confirm the temperature requirement of the APD. In addition, we noted that the validity of the thermal model, according to each of the identified modeling methods, was therefore compared through the thermal analysis utilized in this case.

Development and Field Test of the NEXTSat-2 Synthetic Aperture Radar (SAR) Antenna Onboard Vehicle (차세대소형위성 2호 영상 레이다 안테나 개발 및 차량 탑재 시험)

  • Shin, Goo-Hwan;Lee, Jung-Su;Jang, Tae Seong;Kim, Dong-Guk;Jung, Young-Bae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Based on the requirements of a total weight of 42 kg or less, the NEXTSat-2 SAR (synthetic aperture radar) system was developed. As the NEXTSat-2 is a small-sized satellite, the SAR system was designed to account for about 40% of the dry mass of the payload relative to the total mass. Among the major components of the SAR system - which are an antenna, an RF transceiver, a baseband signal processor, and a power unit - a part with a particularly large dry mass is the antenna, the core of the SAR system. Whereas various selections are possible in consideration of gain and efficiency when designing the antenna, the micro-strip patch array antenna was adopted by reflecting the dry mass, power, and resolution required by the NEXTSat-2 project. In order to meet the mission requirement of the NEXTSat-2, the antenna was developed with a frequency of 9.65 GHz, a gain of 42.7 dBi, and a return loss of -15 dB. The performance of the antenna was verified by conducting a field test onboard the vehicle.

A Study on the Residential Environment Preference and Needs of the Multi-academic Young Single Family Based on Life Style (라이프스타일 기반 다학제적 청년층 1인 가구의 주거 환경 선호 및 요구 분석)

  • Lim, Jun Hyung;Choi, In Young;Park, Hey Kyung
    • Korea Science and Art Forum
    • /
    • v.37 no.1
    • /
    • pp.249-260
    • /
    • 2019
  • Recently, the proportion of single-person households is on the increase in Korea, expected to reach 34.6% in 2035. Among the single-person households, Young single family households are facing greater difficulties due to high house prices in Korea. The government is expanding its support to Young single family, executing various policies such as public lease housings, private lease housings for youth, youth dormitory, etc. The purpose of this study is to understand the exact housing requirement of Young single family households who have different lifestyles with other age groups and provide base line data for youth house planning which will be in use later on. Study methods are shown below. First, this research studied the status and characteristics of Young single family households by looking into literature. Second, by studying previous studies concerned with life style and housing preferences of youth, the tool for investigating preferences and needs of housing environment by Young single family households was composed. Third, survey on characterstics of space usage, preferences and needs on flat composition, and preferences of interior design were conducted based on lifestyle of Young single family-households. The survey was conducted as an online survey using SNS for 150 Young single family holds from the age of 20 and 39, including students and office workers from December 2018 to January 2019. The results are as following. (1) Looking into the space usage characteristics, considering that various activities other than basic functions take place in bedroom and living room of small-sized Young single family households, we need to consider this additionally when planning the housing. (2) Looking into the preferences and composite needs of flat composition, the subjects demand separate bed room and more living room space, and also demand expansion of living room space where various activities take place and additional storage such as dress room in bed room (3) The preferences toward interior design show preferences toward modern style and achromatic color, a representative color. The subjects also prefer floor finishing materials normally used for living spaces, and indirect, soft lighting that uses wall. Also, there are differences between interior design preferences between students (20's) and office workers(30's) due to their different lifestyles. Research is needed to propose practical residential environment requirements and plans through a case study of actual public rental housing and a wider range of users.

Development of a deep-learning based tunnel incident detection system on CCTVs (딥러닝 기반 터널 영상유고감지 시스템 개발 연구)

  • Shin, Hyu-Soung;Lee, Kyu-Beom;Yim, Min-Jin;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.915-936
    • /
    • 2017
  • In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.