• Title/Summary/Keyword: space regolith

Search Result 26, Processing Time 0.022 seconds

Study of the Lunar Regolith using Multi-band Polarimetric Observations

  • Kim, Sungsoo S.;Jung, Minsup;Sim, ChaeKyung;Kim, Il-Hoon;Min, Kyoung Wook;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2014
  • 태양 빛이 달 표면에서 반사될 때는 일부가 편광 된다. 이러한 월면 편광은 달 표토층 입자의 크기와 성분을 알려주는 중요한 정보이나, 이전의 달 궤도선에서는 한 번도 탐사되지 않았다. 또한 달 탐사임무에 있어 틈새시장인 월면 특이지역 연구에도 편광이 중요한 기초자료를 제공한다는 사실이 최근 밝혀졌다. 이에 본 연구진은 한국형 달 탐사선을 위한 우리나라 고유의 창의적 과학 임무 중 하나로 <월면 다파장 편광 탐사>를 제안하며, 이러한 탐사에 필요한 기초연구 및 선행연구를 수행하고 있다. 본 발표에서는 우리가 수행한 지상으로부터의 다파장 편광 관측 결과를 보고하고, 최근 시작한 랩실험과 컴퓨터 시뮬레이션 실험에 대해 소개할 것이다.

  • PDF

Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1 (한국형 인공월면토 생산 시스템 효율성 및 Fe(0) 모사를 위한 수소 환원반응에 관한 실험적 평가)

  • Jin, Hyunwoo;Kim, Young-Jae;Ryu, Byung Hyun;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.17-25
    • /
    • 2020
  • Korea Institute of Civil Engineering and Building Technology has constructed a large scale Dust Thermal Vacuum Chamber to simulate extreme lunar terrestrial environments and to study the Moon as an outposts for space development and exploration. Although a large amount of KLS-1 (Korean Lunar Simulant-1) is required for research, its massive production is practically difficult. This paper describes semi-automatic manufacturing system for massive production of KLS-1 in detail, which is seven times more efficient than manual production. In addition, to increase the similarity with lunar regolith, hydrogen reduction reaction using ilmenite which is one of the minerals was also conducted to simulate nanophase Fe(0) which is the unique property of lunar regolith. As a result, it was found that np-Fe(0) was formed at a temperature of 700℃ or higher, and increased in proportion to the temperature until 900℃.

Experimental Evaluation of Ice-regolith Mixture Settlement Caused by Lunar Ice Extraction (달 얼음-월면토 결합 형태에 따른 얼음 추출로 발생하는 침하량 평가)

  • Lee, Jangguen;Gong, Zheng;Jin, Hyunwoo;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.13-19
    • /
    • 2023
  • Lunar ice is a resource available for future human exploration in deep space and long-term extraterrestrial habitat. However, the origin and nature of lunar ice remains unclear. In addition to remote sensing, international space agencies are competitively planning and conducting missions for lunar surface exploration to determine the existence and resource extent of lunar ice. If a sufficient amount of lunar ice is confirmed, its future in-situ resource utilization is expected to be greatly beneficial. However, due to ice extraction, settlement may occur, which should be taken into account from a geotechnical engineering perspective. Herein, experimental investigations of the potential settlement caused by lunar ice extraction were conducted and different textures of lunar ice were simulated. Consequently, it was confirmed that significant settlement occurs even at the initial water content of ~10% in lunar regolith simulant-ice-mixed soil.

Basic Lunar Topography and Geology for Space Scientists (우주과학자에게 필요한 달의 지형과 지질)

  • Kim, Yong Ha;Choi, Sung Hi;Yu, Yongjae;Kim, Kyeong Ja
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.217-240
    • /
    • 2021
  • Upon the human exploration era of the Moon, this paper introduces lunar topography and geologic fundamentals to space scientists. The origin of scientific terminology for the lunar topography was briefly summarized, and the extension of the current Korean terminology is suggested. Specifically, we suggest the most representative lunar topography that are useful to laymen as 1 ocean (Oceanus Procellarum), 10 maria (Mare Imbrium, Mare Serenitatis, Mare Tranuillitatis, Mare Nectaris, Mare Fecundatis, Mare Crisium, Mare Vaporium, Mare Cognitum, Mare Humorum, Mare Nubium), 6 great craters (Tyco, Copernicus, Kepler, Aristachus, Stebinus, Langrenus). We also suggest Korean terms for highland, maria, mountains, crater, rille, rima, graben, dome, lava tube, wrinkle ridge, trench, rupes, and regolith. In addition, we introduce the standard model for the lunar interior and typical rocks. According to the standard model on the basis of historical impact events, the lunar geological eras are classified as Pre-Nectarian, Nectarian, Imbrian, Erathostenesian, and Copernican in chronologic order. Finally, we summarize the latest discovery records on the water on the Moon, and introduce the concept of water extraction from the lunar soil, which is to be developed by the Korea Institute of Geoscience and Mineral Resources (KIGAM).

The Geometric Albedo of (4179) Toutatis

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Jin, Sunho;Yang, Hongu;Moon, Hong-Kyu;Choi, Young-Jun;JeongAhn, Youngmin;Kim, Myung-Jin;Kwak, Sungwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.44.4-45
    • /
    • 2018
  • (4179) Toutatis (Toutatis hereafter) is one of the Near-Earth Asteroids which has been studied most rigorously not only via ground-based photometric, spectroscopic, polarimetric, and radar observations, but also via the in-situ observation by the Chinese Chang'e-2 spacecraft. However, one of the most fundamental physical properties, the geometric albedo, is less determined. In order to derive the reliable geometric albedo and further study the physical condition on the surface, we made photometric observations of Toutatis near the opposition (i.e., the opposite direction from the Sun). We thus observed it for four days on 2018 April 7-13 using three 1.6-m telescopes, which consist of the Korean Microlensing Telescope Network (KMTNet). Since the asteroid has a long rotational period (5.38 and 7.40 days from Chang'e-2, Zhao et al., 2015), the continuous observations with KMTNet matches the purpose of our photometric study of the asteroid. The observed data cover the phase angle (Sun-asteroid-observer's angle) of 0.65-2.79 degree. As a result, we found that the observed data exhibited the magnitude changes with an amplitude of ~0.8 mag. We calculated the time-variable geometrical cross-section using the radar shape model (Hudson & Ostro 1995), and corrected the effect from the observed data to derive the geometric albedo. In this presentation, we will present our photometric results. In addition, we will discuss about the regolith particles size together with the polarimetric properties based on the laboratory measurements of albedo-polarization maximum.

  • PDF

Rendezvous Mission to Apophis: IV. Investigation of the internal structure - A lesson from an analogical asteroid Itokawa

  • Jin, Sunho;Kim, Yaeji;Jo, Hangbin;Yang, Hongu;Kwon, Yuna G.;Ishiguro, Masateru;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.58.1-59
    • /
    • 2021
  • Exploration of asteroids' internal structure is essential for understanding their evolutional history. It also provides a fundamental information about the history of coalescence and collision of the solar system. Among several models of the internal structures, the rubble-pile model, confirmed by the near-Earth asteroid (25143) Itokawa by Hayabusa mission [1], is now widely regarded as the most common to asteroids with size ranging from 200 m to 10 km [2]. On the contrary, monolithic and core-mantle structures are also possible for small asteroids [3]. It is, however, still challenging to look through the interior of a target object using remote-sensing devices. In this presentation, we introduce our ongoing research conducted at Seoul National and propose an idea to infer the internal structure of Apophis using available instruments. Itokawa's research provides an important benchmark for Apophis exploration because both asteroids have similar size and composition [4][5]. We have conducted research on Itokawa's evolution in terms of collision and space weathering. Space weathering is the surface alteration process caused by solar wind implantation and micrometeorite bombardment [6]. Meanwhile, resurfacing via a collision acts as a counter-process of space weathering by exposing fresh materials under the matured layer and lower the overall degree of space weathering. Therefore, the balance of these two processes determine the space weathering degrees of the asteroid. We focus on the impact evidence on the boulder surface and found that space weathering progresses in only 100-10,000 years and modifies the surface optical properties (Jin & Ishiguro, KAS 2020 Fall Meeting). It is important to note that the timescale is significantly shorter than the Itokawa's age, suggesting that the asteroid can be totally processed by space weathering. Accordingly, our result triggers a further discussion about why Itokawa indicates a moderately fresh spectrum (Sq-type denotes less matured than S-type). For example, Itokawa's smooth terrains show a weaker degree of space weathering than other S-type asteroids [7]. We conjecture that the global seismic shaking caused by collisions with >1 mm-sized interplanetary dust particles induces granular convection, which hinders the progression of space weathering [8]. Note that the efficiency of seismic wave propagation is strongly dependent on the internal structure of the asteroid. Finally, we consider possible approaches to investigate Apophis's internal structure. The first idea is studying the space weathering age, as conducted for Itokawa. If Apophis indicates a younger age, the internal structure would have more voids [9]. In addition, the 2029 close encounter with Earth provides a rare natural opportunity to witness the contrast between before and after the event. If the asteroid exhibits a slight change in shape and space weathering degree, one can determine the physical structure of the internal materials (e.g., rubble-pile monolithic, thick or thin regolith layer, the cohesion of the materials). We will also consider a possible science using a seismometer.

  • PDF

Space Planet Exploration Rover Climbing Test Site Design (우주 행성 탐사 로버 등판 시험장 설계)

  • Byung-Hyun Ryu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • Space exploration is at the forefront of human scientific endeavors, and planetary exploration rovers play a critical role in studying planetary surfaces. Rover performance is especially vital for safely navigating steep terrain and delicate landscapes found on planets like Mars and the Moon. This paper offers a comprehensive overview of a landing testbed designed to simulate challenging extraterrestrial terrain and loose regolith. The paper briefly outlines lunar crater region topographical features and highlights the importance of these simulations in rover testing. It then explores previous landing testbed developments and describes the design process for a landing testbed to be installed in the dirty thermal vacuum chamber at the Korea Institute of Civil Engineering and Building Technology. Once realized, this proposed landing testbed will enable precise evaluations of rover mobility and exploration capabilities under lunar-like conditions, including high vacuum and extreme temperatures.

Rendezvous Mission to Apophis: III. Polarimetry of S-type: For A Better Understanding of Surficial Evolution

  • Geem, Jooyeon;Jeong, Minsup;Jin, Sunho;Sim, Chae Kyung;Bach, Yoonsoo P.;Ishiguro, Masateru;Kwon, Yuna G.;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.57.4-58
    • /
    • 2021
  • Asteroids have undergone various processes such as impacts, space weathering, and thermal evolution. Because they expose their surfaces to space without atmosphere, these evolutional processes have been recorded directly on their surfaces. The remote-sensing observations have been conducted to reveal these evolutional histories of the target asteroids. For example, crater and boulder distributions are unambiguous evidence for past nondestructive impacts with other celestial bodies. Multiband and spectroscopic observations have revealed space-weathering history (as well as compositions). Whereas most physical quantities have been examined intensively using spacecraft and telescopes, only a little has been studied on "the grain size". It is one of the fundamental physical quantities for diagnosing the collisional and thermal history of asteroids. Our group has conducted polarimetric research of asteroids (as well as Moon [1]) to determine the particle size and further investigate the evolutional histories of target asteroids [2],[3]. For example, the existence of regolith on an S-type asteroid, Toutatis, was suggested almost twenty years before space exploration [4]. Moreover, we reported that near-Sun asteroids indicate a signature of submillimeter grains, which could be created by a thermal sintering process by solar radiation [5]. However, it is important to note that in-situ polarimetry has not been reported on the asteroid surface, although the Korean Lunar Exploration Program aims to do polarimetry on the lunar surface [6]. Therefore, it is expected that the polarizer mounted on the Korean Apophis spacecraft can make the first estimate of the grain size and its regional variation over the Apophis surface. In this presentation, we outline research of S-type asteroid surfaces through remote-sensing observations and consider the role of polarimetry. Based on this review, we consider the purpose, potentiality, and strategy of the polarimetry using the onboard device for the Apophis spacecraft. We will report a possible polarization phase curve of Apophis estimated from ordinary chondrites and past observational data of S-type asteroids, taking account of the space weathering effect. Based on this estimation, we will consider the strategy of how to determine the particle size (and space weathering degree) of the Apophis surface. We will also mention the detectability of dust hovering on the surface.

  • PDF

Heat Flux Analysis of Lunar Lander for Potential Landing Candidate Area (달 착륙선의 착륙 후보지별 열 유입량 분석)

  • Park, Tae-Yong;Chae, Bong-Geon;Lee, Jang-Joon;Kim, Jung-Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.324-331
    • /
    • 2018
  • The thermal environment on lunar surface is more severe than that of earth's surface or low earth orbit because of the long daytime and nighttime due to 28 days of rotation cycle of moon. Thus, analyzing heat flux on lunar lander at potential landing sites is important to determine the landing site in its initial design phase. In this study, thermal model of lunar regolith that can simulate lunar surface temperature was constructed for analyzing thermal characteristics according to the potential landing sites of lunar lander. The heat flux analyses were performed various latitudes of equator, mid-latitude, polar regions, lunar mare and highland. In addition, we also investigated the heat flux of lunar lander when it is landed on adjacent area to hill.

Plume Behavior Study of Apollo Lunar Module Descent Engine Using Computational Fluid Dynamics (전산유체역학을 이용한 아폴로 달착륙선 하강엔진의 플룸 거동 연구)

  • Choi, Wook;Lee, Kyun Ho;Myong, Rho Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.766-774
    • /
    • 2017
  • When a plume flow exhausted from a lunar lander descent engine impinges on the lunar surface, regolith particles on the lunar surface will be dispersed due to a plume-surface interaction. If the dispersed particles collide with the lunar lander, some adverse effects such as a performance degradation can be caused. Thus, this study tried to predict the plume flow behaviors using the CFD methods. A nozzle inside region was analyzed by a continuum flow model based on the Navier-Stokes equations while the plume behaviors of the outside nozzle was performed by comparing and analyzing the individual results using the continuum flow model and the DSMC method. As a result, it was possible to establish an optimum procedure of the plume analysis for the lunar lander descent engine in the vacuum condition. In the future, it is expected to utilize the present results for the development of the Korean lunar lander.