• Title/Summary/Keyword: space mission

Search Result 879, Processing Time 0.031 seconds

Evaluation of a Laser Altimeter using the Pseudo-Random Noise Modulation Technique for Apophis Mission

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Choi, Mansoo;Park, Jong Uk;Choi, Chul-Sung;Bang, Seong-Cheol;Choi, Young-Jun;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.165-173
    • /
    • 2021
  • Apophis is a near-Earth object with a diameter of approximately 340 m, which will come closer to the Earth than a geostationary orbit in 2029, offering a unique opportunity for characterizing the object during the upcoming encounter. Therefore, Korea Astronomy and Space Science Institute has a plan to propose a space mission to explore the Apophis asteroid using scientific instruments such as a laser altimeter. In this study, we evaluate the performance metrics of a laser altimeter using a pseudorandom noise modulation technique for the Apophis mission, in terms of detection probability and ranging accuracy. The closed-form expression of detection probability is provided using the cross correlation between the received pulse trains and pseudo-random binary sequence. And the new ranging accuracy model using Gaussian error propagation is also derived by considering the sampling rate. The operation range is significantly limited by thermal noise rather than background noise, owing to not only the low power laser but also the avalanche photodiode in the analog mode operation. However, it is demonstrated from the numerical simulation that the laser altimeter can achieve the ranging performance required for a proximity operation mode, which employs commercially available components onboard CubeSat-scale satellites for optical communications.

ASTRONAUT'S EARTH OBSERVATION ON THE INTERNATIONAL SPACE STSTION

  • Lee Joo-Hee;Kim Yeon-Kyu;Kim Jong-Woo;Choi Gi-Hyuk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.624-627
    • /
    • 2005
  • Ministry of Science & Technology (MOST) and Korea Aerospace Research Institute (KARI) are preparing for the first Korean astronaut program based on the mid and long-term basic plan for space development of Korea from the year of 2003. KARI is making plans for the Korean astronaut's missions with Russia. To participate in the International Space Station (ISS) utilization through the Korean astronaut program, KARI investigates a lot of manned space missions. Among the suggested items, Earth observation on the Russian Module of ISS is the one expected mission for a Korean astronaut. This paper is intended to give readers a brief introduction of ISS Russian Module and research fields of Earth observation for astronaut's mission.

  • PDF

RBSP (Radiation Belt Storm Probes) Mission, Space weather and Science Topics

  • Lee, Jae-Jin;Kim, Kyung-Chan;Hwang, Jung-A;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.89.2-89.2
    • /
    • 2012
  • Radiation Belt, discovered by Van Allen in 1958, is a region energetic particles are trapped by the Earth's magnetic field. To measure charged particles and fields in the radiation belt, RBSP(Radiation Belt Storm Probes) mission will be launched in September 2012 by NASA. RBSP mission consists of two spacecraft having orbit from 600 km to 30,000 km and rotates the Earth twice a day. This mission is not designed just for scientific purpose but have operational function broadcasting real time data for space weather monitoring. As a program of KASI-NASA cooperation, KASI is constructing RBSP data receiving antenna that will be installed by April in Daejeon. With this antenna system, NASA can receive RBSP data for 24 hours and KASI also get space weather information to protect Korean GEO satellites. In this presentation, we will discuss how we use RBSP data for space weather forecasting. In addition, we will talk about science topics that can be achieved by RBSP mission. Especially we focus on the dusk-side electron precipitation that has been considered as a main mechanism of electron dropout events. We show the dusk-side precipitation is closely associated with radiation belt electron loss with NOAA-POES data, and why RBSP mission is important to understand radiation belt physics.

  • PDF

THE NEXT-GENERATION INFRARED ASTRONOMY MISSION SPICA UNDER THE NEW FRAMEWORK

  • NAKAGAWA, TAKAO;SHIBAI, HIROSHI;ONAKA, TAKASHI;MATSUHARA, HIDEO;KANEDA, HIDEHIRO;KAWAKATSU, YASUHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.621-624
    • /
    • 2015
  • We present the current status (as of August 2014) of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3m-class telescope. SPICA is expected to achieve high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. We have carried out the "Risk Mitigation Phase" activity, in which key technologies essential to the realization of the mission have been extensively developed. Consequently, technical risks for the success of the mission have been significantly mitigated. Along with these technical activities, the international collaboration framework of SPICA has been revisited, which resulted in la arger contribution from ESA than that in the original plan. To enable the ESA participation under the new framework, a SPICA proposal to ESA is under consideration as a medium-class mission under the framework of the ESA Cosmic Vision. The target launch year of SPICA under the new framework is the mid-2020s.

Development of Aircraft Mission Performance Analysis Program

  • Lee, Hyunseok;Lee, Hyungjoon;Kwak, Einkeun;Lee, Seungsoo;Bae, Seungho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.162-171
    • /
    • 2013
  • A general purpose aircraft mission performance analysis program has been developed. The program can be used in design mode or in analysis mode. Fuel weight for a given mission profile can be estimated when the design mode is chosen, while mission time or mission range for a given fuel can be estimated when the analysis mode is chosen. The mission analysis program is written with JAVA and includes GUI(Graphic User Interface) for users' conveniences. With a proper combination of databases for propulsion, aerodynamics and weight, the program can be configured to compute the performance of any type of aircraft. The program is validated by comparing its results with the results of a well known performance analysis program by ADD(Agency for Defense Development).

UAV Path Planning for ISR Mission and Survivability (무인항공기의 생존성을 고려한 감시정찰 임무 경로 계획)

  • Bae, Min-Ji
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.211-217
    • /
    • 2019
  • In an complicated battlefield environment, information from enemy's camp is an important factor in carrying out military operations. For obtaining this information, the number of UAVs that can be deployed to the mission without our forces' loss and at low cost is increasing. Because the mission environment has anti-aircraft weapons, mission space is needed for UAV to guarantee survivability without being killed. The concept of Configuration Space is used to define the mission space considering with range of weapons and detect range of UAV. UAV must visit whole given area to obtain the information and perform Coverage Path Planning for this. Based on threats to UAV and importance of information that will be obtained, area that UAV should visit first is defined. Grid Map is generated and mapping threat information to each grid for UAV path planning. On this study, coverage conditions and path planning procedures are presented based on the threat information on Grid Map, and mission space is expanded to improve detection efficiency. Finally, simulations are performed, and results are presented using the suggested UAV path planning method in this study.

Analysis on Delta-Vs to Maintain Extremely Low Altitude on the Moon and Its Application to CubeSat Mission

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Jin, Ho;Choi, Young-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2019
  • This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having ${\pm}10km$ deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.

Mission Analysis of Space Vehicle (우주비행체의 임무해석)

  • 박수홍
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.125-129
    • /
    • 2001
  • A Software development of space launch vehicle danamics and control simulation is presented in this study. The Dynamics for a two body problem including pertubations for various effect show on this paper. Mission analysis for space launch vehicle is included rendezvous mission. The software develpoment is intended to maintain generality to the extent possible through objected approach for future modification and expansion. This result shows various pertubation effect is also important.

  • PDF