• 제목/요약/키워드: space manipulator

검색결과 179건 처리시간 0.155초

불확실한 환경에서 매니퓰레이터 위치제어를 위한 실시간 비젼제어기법에 관한 연구 (A Study on the Real-Time Vision Control Method for Manipulator's position Control in the Uncertain Circumstance)

  • 정완식;김경석;신광수;주철;김재확;윤현권
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.87-98
    • /
    • 1999
  • This study is concentrated on the development of real-time estimation model and vision control method as well as the experimental test. The proposed method permits a kind of adaptability not otherwise available in that the relationship between the camera-space location of manipulable visual cues and the vector of manipulator joint coordinates is estimate in real time. This is done based on a estimation model ta\hat generalizes known manipulator kinematics to accommodate unknown relative camera position and orientation as well as uncertainty of manipulator. This vision control method is roboust and reliable, which overcomes the difficulties of the conventional research such as precise calibration of the vision sensor, exact kinematic modeling of the manipulator, and correct knowledge of position and orientation of CCD camera with respect to the manipulator base. Finally, evidence of the ability of real-time vision control method for manipulator's position control is provided by performing the thin-rod placement in space with 2 cues test model which is completed without a prior knowledge of camera or manipulator positions. This feature opens the door to a range of applications of manipulation, including a mobile manipulator with stationary cameras tracking and providing information for control of the manipulator event.

  • PDF

On the Transforming of Control Space by Manipulator Jacobian

  • Fateh, Mohammad Mehdi;Farhangfard, Hasan
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.101-108
    • /
    • 2008
  • The transposed Jacobian is proposed to transform the control space from task space to joint space, in this paper. Instead of inverse Jacobian, the transposed Jacobian is preferred to avoid singularity problem, short real time calculations and its generality to apply for rectangular Jacobian. On-line Jacobian identification is proposed to cancel parametric errors produced by D-H parameters of manipulator. To identify Jacobian, the joint angles and the end-effector position are measured when tracking a desired trajectory in task space. Stability of control system is analyzed. The control system is simulated for position control of a two-link manipulator driven by permanent magnet dc motors. Simulation results are shown to compare the roles of inverse Jacobian and transposed Jacobian for transforming the control space.

PUMA형 로보트 머니플레이터의 강인한 위치/힘 혼합제어 (Robust Hybrid Position/Force Control of a PUMA-Like Robot Manipulator)

  • 박재욱;이건복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.575-578
    • /
    • 1995
  • In general, the control of robot manipulator is classified into position control and force control. Position controllers give adequate performance when a manipulator is following a trajectory through space and end-effector has no contact with environment. However for most tasks performed by robot manipulator in industry, contact is made between the end-effector and manipulator's environment, so position control may not suffice. The objective of this study is to control both position of a manipulator and the contact forces generated at the hand by using a conceptually simple control law. Position and force control problem is decoupled into subtasts via taskspace formulation and inverse dynamics. Then, the position controllers are designed for the task space variable which represent tangent motion and the forte controllers are designed for the lash space variables which represent normal force.

  • PDF

최소침습수술을 위한 복강경 매니퓰레이터 제어 (Laparoscope Manipulator Control for Minimally Invasive Surgery)

  • 김수현;김광기;조영호
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.685-696
    • /
    • 2011
  • An efficient laparoscope manipulator robot was designed to automatically control the position of laparoscope via a passive joint on end-effector position. The end position of the manipulator is controlled to have corresponding velocity defined in the global coordinate space using laparoscopic visual information. Desired spatial position of laparoscope was derived from detected positions of surgical instrument tips, then the clinical viewing plane was moved by visual servoing task. The laparoscope manipulator is advantageous for automatically maintaining clinically important views in the laparoscopic image without any additional operator. A laparoscope is mounted to a holder which is linked to four degree of freedom manipulator via universal joint-type passive rings connection. No change in the design of laparoscope or manipulator is necessary for its application to surgery assistant robot system. Expanded working space and surgical efficiency were accomplished by implementing slant linking structure between laparoscope and manipulator. To ensure reliable positioning accuracy and controllability, the motion of laparoscope in an abdominal space through trocar was inspected using geometrical analysis. A designed laparoscope manipulating robot system can be easily set up and controlled in an operation room since it has a few subsidiary devices such as a laparoscope light source regulator, a control PC, and a power supply.

Lumped-parameter modeling of flexible manipulator dynamics

  • Kim, Jin-Soo;Konno, Atsushi;Uchiyama, Masaru;Usui, Kazuaki;Yoshimura, Kazuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.117-122
    • /
    • 1994
  • In this paper, we discuss the modeling of flexible manipulators. In the modeling of flexible manipulators, there are two approaches: one is based on the distributed-parameter modeling and the other on the lumped-parameter modeling. The former has been applied to control and analysis of simple manipulator requiring precision, while the latter has been applied to multi-link spatial manipulator, because of the model's simplicity. We have already proposed the lumped-parameter modeling method for simple manipulator, and investigate that model of how much degree of precision we can get. The experiments and simulations are performed, comparing these results, the approximate performance of our modeling method is discussed.

  • PDF

Internal force-based coordinated motion control of dual redundant manipulator

  • Kim, Hyunsoo;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.237-240
    • /
    • 1996
  • Internal Force based control of dual redundant manipulator is proposed. One is resolved acceleration type control in the decoupled joint space which includes null motion space and the other is in the impedance control fashion in which the desired impedances are decoupled in three subspace, internal motion controlled space, orthogonal to that space, and the null motion controlled space. The internal force is formulated with its basis set meaningful. The object dynamics is also briefly evolved beforehand.

  • PDF

여유 자유도 매니퓰레이터를 위한 지적 제한 조건을 기반으로 한 Resolved Motion 방법의 특이점에 관한 연구 (On the Singularities of Optimality Constraint-based Resolved Motion Methods for a Redundant Manipulator)

  • 조동권;최병욱;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.386-390
    • /
    • 1992
  • Algorithmic or kinematic singularities are inevitably a introduced if optimality criteria or augmented kinematic equations are used to resolve the redundancy of almost any manipulator with rotary joints. In this paper, a sufficient condition for a singularity-free optimal solution of the kinematic control of a redundant manipulator is derived and, specifically, algorithmic singularities are analyzed for optimality-based methods. A singularity-free space (SFS) to characterize the performance of a secondary task for a redundant manipulator using the sufficient condition for a redundant manipulator is defined. The SFS is a set of regions classified by the loci of configurations satisfying the inflection condition for manipulability measure in the Configuration space. Using SFS, the topological property of the Configuration space and the invertible workspace without singularities are analyzed.

  • PDF

외란 관측기에 의한 기구학적 여유자유도 매니퓰레이터의 강인한 임피던스 제어 (Robust Impedance Control of Kinematically Redundant Manipulator Based on Disturbance Observer)

  • 오용환;오상록;정완균
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.963-969
    • /
    • 2002
  • Design method of a robust impedance control is proposed for the kinematically redundant manipulators. To achieve this objective, we first use the momentum feedback disturbance observer(MFDOB) scheme which can handle the nonlinear dynamics of a manipulator in Joint space. An extended task space formulation to describe the behaviors of task and null spaces of redundant manipulator is employed. Using the extended task space formulation and disturbance observer scheme, a robust impedance control method is designed. The performance of the proposed extended impedance controller is verified through experiments with a planar three links direct-drive manipulator.

로보트 매니퓰레이터의 운동과 힘 제어 (Motion and force control of robot manipulator)

  • 이남구;박세승;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.174-178
    • /
    • 1991
  • In this paper, we present a unified approach for the control of manipulator motions and active forces based on the operational space formulation. The end-effector dynamic model is used in the development of a control system in which the generalized operational space end-effector forces are selected as the command vector. A "generalized position and force specification matrix" is used for the specification of space of motions and forces in which manipulator is to be controlled. Flexibility in the force sensor, end-effector, and environment are discussed.discussed.

  • PDF

Global Minimum-Jerk Trajectory Planning of Space Manipulator

  • Huang Panfeng;Xu Yangsheng;Liang Bin
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.405-413
    • /
    • 2006
  • A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.