• Title/Summary/Keyword: space flight

Search Result 1,270, Processing Time 0.022 seconds

An Analysis Tool for Flight Test of Airborne Display Software (항공기 시현계통 소프트웨어의 비행시험을 위한 분석도구)

  • Lee, Yong-Rae;Choi, Eu-Teum;Jun, Yong-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.961-968
    • /
    • 2018
  • Airborne display systems provide pilots with a variety of information needed to operate aircraft. Software faults in the display system can seriously affect the operation of the aircraft, because it can provide inaccurate information to the pilot. Therefore, the software faults are identified and eliminated through ground testing and flight testing. This paper presents an analysis tool called FDR (flight data replay) for flight test of airborne display software. This tool works in real time with the mission computer of aircraft. Also, the tool reproduces the functional error conditions that appear in the display systems by applying flight test data to the display software.

Numerical Investigation on a Rotor Tip-Vortex Instability in Very Low Advance Ratio Flight

  • Chung, Ki-Hoon;Hwang, Chang-Jeon;Lee, Duck-Joo;Yim, Jong-Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.84-96
    • /
    • 2005
  • Helical tip vortex is known as stable vortex structure, however the specific frequency component of far wake perturbation induces the vortex pairing in hover and axial flight. It is expected that the tip vortex pairing phenomena may happen in transition flight and very low advance ratio flight so that inflow may be most nonuniform in the low advance ratio flight. The objectives of this paper are that a tip-vortex instability during the transition from hover into very low advance ratio forward flight is numerically predicted to understand a physics by using a time-marching free-wake method. To achieve the objectives, numerical method is firstly validated in typical axial and forward flights cases. Present scheme with trim routine can predict airloads and inflow distribution of forward flight with good accuracy. Then, the transition flight condition is calculated. The rotor used in this wake calculation is a small-scale AH-1G model. By using a tip-vortex trajectory tracking method, the tip-vortex pairing process are clearly observed in transient flight($\mu$=0.03) and disappears at a slightly higher advance ratio($\mu$=0.05). According to the steady flight simulation at $\mu$=0.03, it is confirmed the tip-vortex pairing process is continued in the rear part of rotor disk and not occurs in the front part. Time averaged inflow in this case is predicted as smooth distribution.

Simulator Development for GEO (Geostationary Orbit)-Based Launch Vehicle Flight Trajectory Prediction System (정지궤도 기반 발사체 비행 궤적 추정시스템의 시뮬레이터 개발)

  • Myung, Hwan-Chun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.67-80
    • /
    • 2022
  • The missile early-warning satellite systems have been developed and upgraded by some space-developed nations, under the inevitable trend that the space is more strongly considered as another battle field than before. As the key function of such a satellite-based early warning system, the prediction algorithm of the missile flight trajectory is studied in the paper. In particular, the evolution computation, receiving broad attention in the artificial intelligence area, is applied to the proposed prediction method so that the global optimum-like solution is found avoiding disadvantage of the previous non-linear optimization search tools. Moreover, using the prediction simulator of the launch vehicle flight trajectory which is newly developed in C# and Python, the paper verifies the performance and the feature of the proposed algorithm.

Flight Dynamics and Navigation for Planetary Missions in Korea: Past Efforts, Recent Status, and Future Preparations

  • Song, Young-Joo;Lee, Donghun;Bae, Jonghee;Kim, Young-Rok;Choi, Su-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.119-131
    • /
    • 2018
  • In spite of a short history of only 30 years in space development, Korea has achieved outstanding space development capabilities, and became the $11^{th}$ member of the "Space Club" in 2013 by launching its own satellites with its own launch vehicle from a local space center. With the successful development and operation of more than 10 earth-orbiting satellites since 1999, Korea is now rapidly expanding its own aspirations to outer space exploration. Unlike earth-orbiting missions, planetary missions are more demanding of well-rounded technological capabilities, specifically trajectory design, analysis, and navigation. Because of the importance of relevant technologies, the Korean astronautical society devoted significant efforts to secure these basic technologies from the early 2000s. This paper revisits the numerous efforts conducted to date, specifically regarding flight dynamics and navigation technology, to prepare for future upcoming planetary missions in Korea. However, sustained efforts are still required to realize such challenging planetary missions, and efforts to date will significantly advance the relevant Korean technological capabilities.

A Series of Process of Electrical Integration and Function Test for Flight Model of STEP Cube Lab. (큐브위성 STEP Cube Lab. 비행모델의 전자조립 및 기능시험 과정)

  • Jeong, Hyeon-Mo;Chae, Bong-Geon;Han, Sang-Hyuck;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.814-824
    • /
    • 2016
  • The mission objective of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) classified as a pico-class satellite is to find space core technologies researched at domestic industry or university and to verify these technologies on mission orbit. To implement this objective, system level electrical integration and function test (EIT) by using developed flight software were performed in compliance with system requirements. And the effectiveness of the flight model (FM) was verified through launch and thermal vacuum test at acceptance level. This paper will introduce a series of process of electrical function tests for FM EIT, launch and thermal vacuum tests.

Solar Sails: Technology And Demonstration Status

  • Johnson, Les;Young, Roy;Barnes, Nathan;Friedman, Louis;Lappas, Vaios;McInnes, Colin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2012
  • Solar Sail propulsion has been validated in space (IKAROS, 2010) and soon several more solar-sail propelled spacecraft will be flown. Using sunlight for spacecraft propulsion is not a new idea. First proposed by Frederick Tsander and Konstantin Tsiolkovsky in the 1920's, NASA's Echo 1 balloon, launched in 1960, was the first spacecraft for which the effects of solar photon pressure were measured. Solar sails reflect sunlight to achieve thrust, thus eliminating the need for costly and often very-heavy fuel. Such "propellantless" propulsion will enable whole new classes of space science and exploration missions previously not considered possible due to the propulsive-intense maneuvers and operations required.

Instrument Flight Certification Process and Flight Test Results of Korean Utility Helicopter (한국형 기동헬기 계기비행 인증절차 및 비행시험 결과)

  • Kwon, Hyuk-Jun;Park, Jong-Hoo;Park, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • In this paper, the instrument flight certification process and flight test results of Korean Utility Helicopter (KUH) are presented. For the instrument flight certification, the suitability of installed equipments and instruments have been reviewed and verified by ground and flight tests. Next, static and dynamic stability test are conducted in accordance with FAR-29 Appendix B. The static stability is determined by the change of speed and attitude according to control inputs. The dynamic stability is evaluated by how quickly the response of the helicopter due to long and short period control inputs are decreased. The pilot workload evaluation are also carried out by simulated IMC flight tests. This paper presents the workload assessment results when some failures are occurred at cockpit instruments, engine or flight control systems as well as the normal situation. After the simulated IMC flight test is completed, actual instrument flight test are conducted in a real IMC environment according to the air traffic controls.

Automatic Processing Techniques of Rotorcraft Flight Data Using Data Mining (회전익항공기 운동모델 개발을 위한 데이터마이닝을 이용한 비행데이터 자동 처리 기법)

  • Oh, Hyeju;Jo, Sungbeom;Choi, Keeyoung;Roh, Eun-Jung;Kang, Byung-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.823-832
    • /
    • 2018
  • In general, the fidelity of the aircraft dynamic model is verified by comparison with the flight test results of the target aircraft. Therefore, the reference flight data for performance comparisons must be extracted. This process requires a lot of time and manpower to extract useful data from the vast quantity of flight test data containing various noise for comparing fidelity. In particular, processing of flight data is complex because rotorcraft have high non-linearity characteristics such as coupling and wake interference effect and perform various maneuvers such as hover and backward flight. This study defines flight data processing criteria for rotorcraft and provides procedures and methods for automated processing of static and dynamic flight data using data mining techniques. Finally, the methods presented are validated using flight data.

A Study on the Parameters for Icing Airworthiness Flight Tests of Surion Military Helicopter (수리온 군용헬기의 결빙 감항인증 비행시험을 위한 파라미터 고찰)

  • Hur, Jang-Wook;Kim, Chan-Dong;Jang, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.526-532
    • /
    • 2015
  • In order to relieve limitation of flight operation under icing condition and verify its operation in adverse weather condition for Surion, military helicopter developed in Korea, airworthiness certification in icing condition is required. The process of Surion icing certification should be considered by implementation of four methods by step such as CFD analysis, simulated flight tests, artificial icing flight tests, and natural icing flight tests. For Surion icing flight tests, these are required 20~30 sorties and 20~23 hours in artificial icing condition; 20~30 sorties and 20~22 hours in natural icing condition. In addition, to proceed with efficient flight tests, it is necessary to implement artificial icing flight tests in LWC $0.5{\sim}1.0g/m^3;$ natural icing flight tests in less than LWC $0.5g/m^3$.

Development of ROS-based Flight and Mission State Communication Node for X-Plane 11-based Flight Simulation Environment

  • Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-84
    • /
    • 2021
  • A novel robot-operating-system-based flight and mission state communication node for X-Plane 11 flight control simulation environments and its simulation results were discussed. Although the proposed communication method requires considerable implementation steps compared with the conventional MATLAB/Simulink-based User Datagram Protocol (UDP) block utilization method, the proposed method enables a direct comparison of cockpit-view images captured during flight with the flight data. This comparison is useful for data acquisition under virtual environments and for the development of flight control systems. The fixed/rotary-wing and ground terrain elements simulated in virtual environments exhibited excellent visualization outputs, which can overcome time and space constraints on flight experiments and validation of missionary algorithms with complex logic.