• Title/Summary/Keyword: space flight

Search Result 1,270, Processing Time 0.025 seconds

A Study on Horizontal Moment Flight Coefficient Estimation of a Flying Disc Using Miniaturized Inertial Measurement Module (초소형 관성측정모듈을 이용한 플라잉디스크의 수평축 모멘트 미계수 추정 연구)

  • Son, Hyunjin;Lee, Ju Hwan;Lee, Young Jae;Sung, Sangkyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.385-392
    • /
    • 2018
  • This paper suggests a new method to estimate the roll and pitch damping moment coefficients of a flying disc through sensor data from the onboard IMU module. This method can be easily performed than wind tunnel or computational fluid dynamics methods because it estimates aerodynamic coefficients simply after accumulating the inertial data through several repeated flight experiments. Estimated coefficients are applied to a simulator which is based on the flight dynamics of a flying disc. Finally, the predicted flight trajectory is compared with the true position provided by GPS, which demonstrated the validity of the proposed estimation method.

Autonomous Aerobatic Flight for Fixed Wing Aircraft (고정익 항공기의 자율 곡예비행)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1217-1224
    • /
    • 2009
  • A simple and effective guidance and control scheme that enables autonomous three-dimensional path-following for a fixed wing aircraft is presented. The method utilizes the nonlinear path-following guidance law for the outer loop that creates steering acceleration command based on the desired flight path and the current position and velocity of the vehicle. The scheme considers the gravity in the guidance level, where it is subtracted from the acceleration command to form the specific force acceleration command which the aircraft is better suited to follow than the total acceleration command in the inner-loop. A roll attitude control scheme is also presented that enables inverted flight or sideslip maneuvers such as slow roll and knife-edge. A series of aerobatic maneuvers are demonstrated through simulations to show the potential of the proposed scheme.

Design of the Automatic Flight and Guidance Controller for 50m Unmanned Airship Platform

  • Lee, Sang-Jong;Kim, Seong-Pil;Kim, Tae-Sik;Kim, Dong-Min;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.64-75
    • /
    • 2005
  • The Stratospheric Airship Platform (SAP) has a capability of performing the autonomous and guidance flight to satisfy given missions. To be used as the High Altitude Platforms (HAPs), the capabilities of controlling platform's accurate position and keeping the station point are the most important features. Under this circumstances Autonomous Flight Control System (AFCS) is a critical system and plays a key role in achieving the given requirements and succeeding in missions. In this paper, the design and analysis results of the AFCS algorithms and controller are presented. The brief summary of the AFCS hardware structure is also explained. The autopilot controller and guidance logics were designed based on the linear dynamics of the unmanned airship platform and the full nonlinear dynamics was considered to evaluate and verify their performances.

A Study on Trim Flight Condition for a Korean Traditional Bangpae Kite with Low Aspect Ratio (작은 가로세로비를 가진 전통 방패연의 평형 비행 조건 연구)

  • Kang, Chi-Hang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.871-876
    • /
    • 2011
  • In this paper, the equilibrium flight conditions of a Korean Traditional Bangpae Kite with low aspect ratio were analyzed by it's aerodynamic data of wind tunnel test. The data of aerodynamic forces and center of pressure of the Kite were used to calculate the relative length of bridles to satisfy the condition of settling the kite to the static equilibrium steady state between ${\theta}=30^{\circ}{\sim}60^{\circ}$. From this equilibrium flight performance analysis, we obtained ($0.88{\pm}0.02$)c of the rear bridle length corresponding to 0.88c of fixed front bridle length. These results were exact agreement with the relative bridle lengths by Korean classical method.

Loads Analysis of Smart UAV Using ARGON (ARGON을 이용한 스마트 무인기 비행하중해석)

  • Shin, Jeong-Woo;Kim, Sung-Chan;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.76-84
    • /
    • 2005
  • For flight loads analysis of Smart UAV, applicable regulations and loads conditions should be prepared in advance, and modeling for aerodynamics, weight, and structure should be performed. Panel method is usually adopted for aircraft loads analysis to obtain aerodynamic loads. In this study, ARGON which is a multidisciplinary fixed wing aircraft design software co-developed by KARI and TsAGI was used for loads analysis. ARGON can be utilized for flutter and stress analysis as well as for flight and ground loads analysis. In this paper, flight loads analysis of Smart UAV which is a FAR 23 category airplane was performed with ARGON and the results were presented.

Temperature and Pressure Measurement on the Flame Deflector during KSLV-I Flight Tests (나로호 비행시험을 통한 화염유도로의 온도 및 압력 측정)

  • Jung, Il-Hyung;Moon, Kyung-Rok;Kang, Sun-Il;An, Jae-Chel;Ra, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.378-384
    • /
    • 2011
  • During the flight test of KSLV-I, various sensors are installed in the launch pad and the flame deflector to measure the flame characteristics and their influences on the launch complex when a launch vehicle lifts off. Parameter Measurement System is responsible for acquiring the above flight test data. The measurement methodology such as the configuration of measurement system, sensor locations and data acquisition procedures are presented. And this paper compares and explains the characteristics of data sets measured during two flight tests.

Object-Oriented Mission Modeling for Multiple Transport Aircraft

  • Zang, Jing;Liu, Hu;Liu, Tianping;Ni, Xianping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.264-271
    • /
    • 2013
  • A method of multiple transport-aircraft mission modeling is proposed in order to improve the efficiency of evaluating and optimizing pre-mission plans. To deal with the challenge of multiple transport-aircraft missions, the object-oriented modeling method is utilized. The elements of the mission are decomposed into objects and businesses, And the major mission objects and their important properties are summarized. A complex mission can be broken down into basic business modules such as the ground section and flight section. The business models of loading and fueling services in the ground section are described. The business model of the flight section is composed of an air route and flight profile with the flight equation and the fuel consumption model. The logical relationship of objects and business modules is introduced. The architecture of the simulation system, which includes a database, computation module, graphical user interface (GUI) module, and a result analysis module, is established. A sample case that includes two different plans is provided to verify the model's ability to achieve multi-aircraft composite mission simulation.

A study of the dynamic characteristic of airship through the flight test (비행선의 비행 시험을 통한 동특성에 관한 연구)

  • Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.97-103
    • /
    • 2004
  • Nowadays, many kinds of research for airship are studying with increasing of interests of airship. But these are far from perfect. The data acquisition from the actual flight test has lots of difficulties because of the characteristics from the slow dynamic response and high sensitivity for external environment. In this paper, through the actual flight test, appropriateness of the mathematical dynamic model applied here was verified by comparing the test data with simulation data in same control conditions.

Helicopter Trim Analysis and Flight Simulation by Uising DAE Based PPTA (Partial Periodic Trimming Algorithm) (DAE 해법과 PPTA(Partial Periodic Trimming Algorithm)를 이용한 헬리콥터 트림해석 및 비행 시뮬레이션)

  • Kim,Chang-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • To get a periodic trim solution from Level II helicopter flight dynamic equations, DAE based PPT A (partial Periodic Trimming Algorithm) has been proposed. Iterative update of state variables from PPT A can cause a numerical instability in DAE solver which needs compatible initial conditions. By simply adjusting the order of DAE solver a periodic trim can be obtained with good accuracy. Application for CBM (Common Baseline Model) helicopter showed the same trim result as harmonic balance method and the effective elimination of unrealistic initial responses at the start of flight simulation.

Integrated Flight Simulation Program for Multicopter Drones by Using Acausal and Object-Oriented Language Modelica (비인과, 객체지향적 언어 모델리카를 이용한 멀티콥터형 드론의 통합 비행 시뮬레이션 프로그램)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.437-446
    • /
    • 2017
  • An integrated flight simulation program for multicopter drones is presented. The program includes rigid body dynamics, propeller thrust, battery energy, control, and air. Using this program, users can monitor and analyze the states of drones along flight trajectories. As a programming language, Modelica has been chosen, that specializes in simulation program development. Modelica enables users to develop simulation programs efficiently due to acausal and object oriented properties. For missions including horizontal and vertical maneuvers, many dynamical states of drones have been analyzed with simulation results.