• 제목/요약/키워드: space flight

검색결과 1,270건 처리시간 0.029초

Development of state-of-the-art detectors for X-ray astronomy

  • Lee, Sang Jun;Adams, J.S.;Audley, H.E.;Bandler, S.R.;Betancourt-Martinez, G.L.;Chervenak, J.A.;Eckart, M.E.;Finkbeiner, F.M.;Kelley, R.L.;Kilbourne, C.A.;Porter, F.S.;Sadleir, J.E.;Smith, S.J.;Wassell, E.J.
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.53.3-54
    • /
    • 2015
  • We are developing large arrays of X-ray microcalorimeters for applications in X-ray astronomy. X-ray microcalorimeters can detect the energy of X-rays with extremely high resolution. High-resolution Imaging spectroscopy enabled by these arrays will allow us to study the hot and energetic nature of the Universe through the detection of X-rays from astronomical objects such as neutron stars or black holes. I will introduce the state-of-the-art X-ray microcalorimeters being developed at NASA/GSFC and the future X-ray observatory missions based on microcalorimeters.

  • PDF

COronal Diagnostic EXperiment (CODEX)

  • Bong, Su-Chan;Kim, Yeon-Han;Choi, Seonghwan;Cho, Kyung-Suk;Newmark, Jeffrey S;Gopalswamy, Natchimuthuk;Gong, Qian;Reginald, Nelson L.;Cyr, Orville Chris St.;Viall, Nicholeen M.;Yashiro, Seiji;Thompson, Linda D.;Strachan, Leonard
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.82.2-82.3
    • /
    • 2019
  • Korea Astronomy and Space Science Institute (KASI), in collaboration with the NASA Goddard Sparce Flight Center (GSFC), will develop a next generation coronagraph for the International Space Station (ISS). COronal Diagnostic EXperiment (CODEX) uses multiple filters to obtain simultaneous measurements of electron density, temperature, and velocity within a single instrument. CODEX's regular, systematic, comprehensive dataset will test theories of solar wind acceleration and source, as well as serve to validate and enable improvement of space-weather/operational models in the crucial source region of the solar wind. CODEX subsystems include the coronagraph, pointing system, command and data handling (C&DH) electronics, and power distribution unit. CODEX is integrated onto a standard interface which provides power and communication. All full resolution images are telemeters to the ground, where data from multiple images and sequences are co-added, spatially binned, and ratioed as needed for analysis.

  • PDF

BITSE Instrument

  • Choi, Seonghwan;Park, Jongyeob;Yang, Heesu;Baek, Ji-Hye;Kim, Jihun;Kim, Jinhyun;Kim, Yeon-Han;Cho, Kyung-Suk;Newmark, Jeffrey S.;Gong, Qian;Nguyen, Hanson;Chang, William S.;Swinski, Joseph-Paul A.;Gopalswamy, Natchumuthuk
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.57.2-57.2
    • /
    • 2019
  • BITSE is a balloon mission, which is a solar coronagraph to measure speed and temperature of the solar wind using 4 different wavelength filters and an pixelated polarization camera. KASI and NASA jointly designed, developed, and tested the solar coronagraph. Mainly KASI developed an imaging system and a control system, and NASA developed an optical system and mechanical structures. We mount the BITSE on Wallops Arc-Second Pointer (WASP) of Wallops Flight Facility, and launch it with a 39 mcf balloon of Columbia Scientific Ballon Facility. We will introduce the overall system of the BITSE.

  • PDF

BITSE Preliminary Result and Future Plan

  • Bong, Su-Chan;Yang, Heesu;Lee, Jae-Ok;Kwon, Ryun Young;Cho, Kyung-Suk;Kim, Yeon-Han;Reginald, Nelson L.;Yashiro, Seiji;Gong, Qian;Gopalswamy, Natchumuthuk;Newmark, Jeffrey S.
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.58.2-58.2
    • /
    • 2019
  • BITSE is a technology demonstration mission to remotely measure the speed, temperature, and density of the solar wind as it forms as close as 3 Rs. BITSE obtained coronal images during its one day flight above more than 99% of the atmosphere, and calibration data are taken in the laboratory as well as during the flight. As the linearly polarized K-corona is much fainter than other bright sources like diffraction, sky, and F-corona, a careful data reduction is required to obtain reliable scientific results. We will report status of the obtained data, the reduction progress, and future plan.

  • PDF

Development of the Command and Data Handling System and Flight Software of BITSE

  • Park, Jongyeob;Baek, Ji-Hye;Jang, Bi-ho;Choi, Seonghwan;Kim, Jihun;Yang, Heesu;Kim, Jinhyun;Kim, Yeon-Han;Cho, Kyung-Suk;Swinski, Joseph-Paul A.;Nguyen, Hanson;Newmark, Jeffrey S.;Gopalswamy, Natchumuthuk
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.57.4-57.4
    • /
    • 2019
  • BITSE is a project of balloon-borne experiments for a next-generation solar coronagraph developed by a collaboration with KASI and NASA. The coronagraph is built to observe the linearly polarized brightness of solar corona with a polarization camera, a filter wheel, and an aperture door. For the observation, the coronagraph is supported by the power distribution unit (PDU), a pointing system WASP (Wallops Arc-Second Pointer), telemetry & telecommand system SIP (Support Instrument Package) which are developed at NASA's Goddard Space Flight Center, Wallops Flight Facility, and Columbia Scientific Balloon Facility. The BITSE Command and Data Handling (C&DH) system used a cost-off-the-shelf electronics to process all data sent and received by the coronagraph, including the support system operation by RS232/422, USB3, Ethernet, and digital and analog signals. The flight software is developed using the core Flight System (cFS) which is a reusable software framework and set of reusable software applications which take advantage of a rich heritage of successful space mission of NASA. The flight software can process encoding and decoding data, control the subsystems, and provide observation autonomy. We developed a python-based testing framework to improve software reliability. The flight software development is one of the crucial contributions of KASI and an important milestone for the next project which is developing a solar coronagraph to be installed at International Space Station.

  • PDF

Science Goal of the Diagnostic Coronagraph on the International Space Station

  • Bong, Su-Chan;Kim, Yeon-Han;Cho, Kyung-Suk;Lee, Jae-Ok;Seough, Jungjoon;Park, Young-Deuk;Newmark, Jeffrey S.;Gopalswamy, Natchimuthuk;Viall, Nicholeen M.;Antiochos, Spiro;Arge, Charles N.;Yashiro, Seiji;Reginald, Nelson L.;Fineschi, Silvano;Strachan, Leonard
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.47.3-47.3
    • /
    • 2018
  • The Korea Astronomy and Space Science Institute (KASI) plans to develop a coronagraph in collaboration with the National Aeronautics and Space Administration (NASA), to be installed on the International Space Station (ISS). It uses multiple filters to obtain simultaneous measurements of electron density, temperature, and velocity within a single instrument. The primary science goal is to understand the physical conditions in the solar wind acceleration region, and the secondary goal is to enable and validate the next generation of space weather science models. The planned launch in 2022 provides great potential for synergy with other solar space missions such as Solar Orbiter and Parker Solar Probe.

  • PDF

FLIGHT SOFTWARE DEVELOPMENT FOR THE KODSAT

  • Choi Eun-Jung;Park Suk-June;Kang Suk-Joo;Seo Min-Suk;Chae Jang-Soo;Oh Tae-Sik
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.364-367
    • /
    • 2004
  • This paper presents the flight software of KoDSat (KSLV-l Demonstration Satellite) which performs demonstrating the KSLV-l (Korea Space Launch Vehicle-l)'s satellite launch capability. The KoDSat Flight Software executes in a single-processor, multi-function flight computer on the spacecraft, the OBC (On Board Computer). The flight software running on the single processor is responsible for all real-time processing associated with: processor startup and hardware initialization, task scheduling, RS422 handling function, command and data handling including uplink command and down-link telemetry, attitude determination and control, battery state of charge monitoring and control, thermal control processing.

  • PDF

Development of a diagnostic coronagraph on the ISS: progress report

  • Kim, Yeon-Han;Choi, Seonghwan;Bong, Su-Chan;Cho, Kyungsuk;Park, Young-Deuk;Newmark, Jeffrey;Gopalswamy, Nat.;Yashiro, Seiji;Reginald, Nelson
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.44.2-44.2
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute (KASI) has been collaborating with the NASA Goddard Space Flight Center (GSFC), to install a diagnostic coronagraph on the International Space Station (ISS). The coronagraph is designed to obtain simultaneous measurements of electron density, temperature, and velocity using multiple filters in the 3-10 Rs range. In 2019, we developed a new coronagraph and launched it on a stratospheric balloon (BITSE) from Fort Sumner, New Mexico in USA. As the next step, the coronagraph will be further developed, installed and operated on the ISS (CODEX) in 2023 to understand the physical conditions in the solar wind acceleration region, and enable and validate the next generation space weather models. In this presentation, we will report recent progress and introduce future plan.

  • PDF

Development of a diagnostic coronagraph on the ISS: BITSE overview and progress report

  • Kim, Yeon-Han;Choi, Seonghwan;Bong, Su-Chan;Cho, Kyungsuk;Park, Young-Deuk;Newmark, Jeffrey;Gopalswamy, Nat.;Yashiro, Seiji;Reginald, Nelson
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.56.4-56.4
    • /
    • 2019
  • The Korea Astronomy and Space Science Institute (KASI) has been collaborating with the NASA's Goddard Space Flight Center, to install a coronagraph on the International Space Station (ISS). The coronagraph will utilize spectral information to simultaneously measure electron density, temperature, and velocity. As a first step, we developed a new coronagraph and launched it on a stratospheric balloon in 2019 (BITSE) from Fort Sumner, New Mexico in USA. As the next step, the coronagraph will be be further developed, installed and operate on the ISS (CODEX) in 2022 to address a number of important questions (e.g., source and acceleration of solar wind, and coronal heating) in the physics of the solar corona and the heliosphere. Recently, BITSE has been launched at Fort Sumner, New Mexico. In this presentation, we will introduce the BITSE mission and discuss recent progress.

  • PDF

CODEX Filter Configuration

  • Bong, Su-Chan;Yang, Heesu;Kim, Jihun;Lee, Jae-Ok;Kim, Yeon-Han;Cho, Kyuhyoun;Reginald, Nelson L.;Gong, Qian;Budinoff, Jason G.;Newmark, Jeffrey S.
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.78.3-79
    • /
    • 2021
  • Coronal Diagnostic Experiment (CODEX) is a diagnostic coronagraph developed by the Korea Astronomy and Space Science Institute and the NASA Goddard Space Flight Center (GSFC) to be deployed in 2023 on the International Space Station (ISS). It is designed to obtain simultaneous measurements of electron density, temperature, and velocity in the 2.5 - 10 solar radius range using multiple filters. The filters are mounted in two filter wheel assemblies (FWAs), which have five filter positions each. One position of each FWA is occupied by windows, and remaining eight positions are occupied by three bandpass filters for temperature, two bandpass filters for velocity, one Ca II H filter for F-corona, one broadband filter for fast imaging and density, and one neutral density (ND) filter for direct Sun viewing and safety.

  • PDF