• 제목/요약/키워드: space drilling

Search Result 110, Processing Time 0.652 seconds

Review of Applicability of the Standard Blasting Patterns of MLTM to Various Rock Types (국토해양부 표준발파패턴의 셰일암반 적용성에 관한 사례 연구)

  • Kim, Se-Hyun
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Blasting is necessary for excavation processes since more than 70% of korean land is consist of mountains. The vibration and noise accompanied by blasting processes usually bring about public complaints. Blasting patterns are chosen by economical efficiency, stability and construction conveniency. However, there are many alternatives without control to settle the popular complaint. To prevent those alternatives, standard blasting method for design and construction were suggested by MLTM (Ministry of Land, Transport and Maritime Affairs) in 2006. However, standard blasting pattern of MLTM was designed in a lump irrespective of types of rocks. Economical loss may occur by ignoring the characteristics of rocks for the applications to the rocks with low intensity, such as shale, or containing many joint. We deduced some economical progresses by performing test blasting with adjusted drilling spacing and length of burden considering the characteristics of local rock. This paper suggests the start of case studies for different applications. Economic improvement can be expected by applying those results deduced from case studies to design and construction.

An Analysis of Pore Network of Drilling Core from Pohang Basin for Geological Storage of CO2 (이산화탄소 지중저장을 위한 포항분지 시추코어의 공극구조 분석)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.181-191
    • /
    • 2016
  • In geological storage of $CO_2$, the behavior of $CO_2$ is influenced by pore network of rock. In this study, the drilling cores from Pohang Basin were analyzed quantitatively using three-dimensional images acquired by X-ray micro computed tomography. The porosities of sandstone specimens around 740 m-depth (T1), 780 m-depth (T2) and 810 m-depth (T3) which were target strata were 25.22%, 23.97%, 6.28%, respectively. Equivalent diameter, volume, area, local thickness of pores inside the sandstone specimens were analyzed. As a result, the microstructural properties of T1 and T2 specimens were more suitable for geological storage of $CO_2$ than those of T3 specimens. The result of the study can be used as input data of the site for decision of injection condition, flow simulation and so on.

Analysis of the Influence of the Design Factors and Modeling for the 8inch Class Down-the-Hole Hammer (8인치급 다운더홀(DTH) 해머의 모델링 및 설계 인자에 따른 영향도 분석)

  • Lee, Chung No;Hong, Ki Chang;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • The Down-the-Hole hammer is one of the pneumatic drill equipment used for grinding, drilling, and mining. One the advantages of which is that a reduction work efficiency at deep site are relatively small compared to other drilling methods. Due to the large vibration in the underground area, it is difficult to measure the performance of the hammer, and hammer testing requires substantial production cost and operating expenses so research on the development of the hammer is insufficient. Therefore, this study has developed a dynamic simulation model that apprehends the operating principles of an 8-inch DTH hammer and calculates performance data such as performance impact force, piston speed, and BPM. By using the simulation model, design factors related to strike force and BPM were selected, and the influence of each design factors on performance was analyzed through ANOVA analysis. As a result, be the most important for BPM and the strike force are position of upper port that push the piston in the direction of the bit and in BPM, the size of the empty space between the bits and the piston is the second most important design factor.

A Study on the Support Design for Underground Excavation Based on the Rock-Support Interaction Analysis (암반-지보 거동분석에 의거한 지하굴착 지보설계에 관한 연구)

  • 김혁진;조태진;김남연
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Engineering rock mass classification is extensively used to determine the reasonable support system throughout the tunneling process in the field. Selection of support system based on the results of engineering rock mass classification is simple and straight-forward. However, this method cannot consider the effect of in-situ stresses, mechanical properties of support material, and support installation time on the behavior or rock-support system To handle the various conditions encountered in the underground excavation sites rock-support system. To handle the various conditions encountered in th eunderground excavation sites rock-support interaction program has been developed. This program can analyze the interaction between rock mass and support materials and also can simulate the tunnel excavation-support insstallation process by controlling the support installation time and the stiffness of support system. Practical applicability of this program was verfied by comparing the results of support design to those from rock mass classification for virtual underground excavation at the drilling site KD-06 in Geoje island.

  • PDF

A Study on the Variation of the Surface and Groundwater Flow System related to the Tunnel Excavation in DONGHAE Mine Area(l)-Concern on Hydrological and Rock Hydraulic Approach (동해신광산 터널굴착공사와 관련된 지표수 및 지하수의 유동변화에 대한 조사연구(l)-수문학 및 암반수리학적 접근을 중심으로)

  • 이희근;전효택;이종운;이대혁;류동우;오석영
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.347-362
    • /
    • 1995
  • The purpose of this study was that manage effectively the excavation process of the transport tunnel in DONGHAE mine area by investigating the variationof the surface and groundwater flow system around the tunnel and neighbouring villages. Thus, the effect of excavation and water-prrofing process on the water system has been studied through the naked eye survey of the tunnel and the surface outcrop, joint survey, core drilling, the measurement of the surface water quantity, evapotranspiration and precipitation analysis, rock hydraulics approach, the pressure test of boreholes, the variation of the water level, and finally the numerical analysis. From above approachs, we derived the conclusion that the exhaustion of the surface water was not caused by the tunnel excavation on the groundwater system was minimized by effective water proofing process.

  • PDF

The Size Effect in Measuring the Fracture Toughness of Rock using Chevron Bend Specimen (암석의 파괴인성 측정에서 나타나는 CB 시험편의 치수효과에 관하여)

  • 김재동;백승규
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.251-264
    • /
    • 1992
  • In this study, the size effect in measuring the fracture toughness of rock was investigated using the ISRM Suggested Method for Fracture toughness using Chevron Bend Specimens. Total 58 specimens were prepared with 4 different diameters, 29, 42, 54, 68mm and center cut-chevron notch. In addition to this, to evaluated the effect of anisotropy of Jecheon granite, which is the sample for this study, core drilling direction was adjusted perpendicular(short transverse) and parallel(arrester) to the rift plane in the sample and the measured fracture toughness for each direction were compared. Important results obtained from this study are as follows. Level ll test condition is more adequate than l, because of low data scattering and precision and corrected fracture toughness of Jechoen granite measured and 2.2MPa{{{{ SQRT { m} }}}} for arrester direction with minimum initial crack length 0.7cm. From the relationship between core diameter and initial crack length presented in the ISRM testing method, the specimen diameter should be bigger than 47mm. The fracture toughnesses measured for arrester and short transverse directon show 10% difference. This is to the anisotropy of Jecheon granite possessing rift plane.

  • PDF

The Effects the Number of Free Faces on the Level of Blasting Vibration (자유면의 수가 발파진동의 크기에 미치는 영향)

  • Lee, Hyo;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.263-271
    • /
    • 2001
  • Blast-vibration tests were carried out to determine the effects of the number of free face on the level of blast vibration. Frequency chatacteristics were also examined by using FFT analysis. To check the effects of the number of free face, charge weight per delay, drilling length, burden and space were applied uniformly and the number of free face was only changed from one to four. The results from tests were checked by regression analysis and K-value.

  • PDF

Development and evaluation of new drilling and blasting method for excavaton of rock mass with one free surface (일자유면 암반 굴착을 위한 신바파공법의 개발 및 평가)

  • 임재웅;윤영재;서정복
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.237-249
    • /
    • 1994
  • A new type of cut method, called SK-cut, was developed in order to overcome the shortcomings of the conventional V-cut and Burn-cut blasting methods. Total 190 times of test blasts were performed for the evaluation of the efficiency of new blasting method. V-cut, Burn cut and SK-cut were compared by applying them to the excavation of main gallery and construction tunnel of underground oil storage cavern. Test results showed that excavation efficiency of the new method was increased by 5.9~9.8% and that specific charge was reduced to 71~92%.

  • PDF

Implementation Method of GIS Map for 3D Liquefaction Risk Analysis (3차원 액상화 위험분석을 위한 GIS Map 구현 방안)

  • Lee, Woo-Sik;Jang, Yong Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.10-17
    • /
    • 2020
  • Recently, the liquefaction phenomenon was first discovered in Korea due to a magnitude 5.4 earthquake that occurred in Pohang, Gyeonsangbuk-do. When liquefaction occurs, some of the water and sand are ejected to the ground, producing a space, which leads to various dangerous situations, such as ground subsidence, building collapse, and sinkhole generation. Recently, the necessity of producing a liquefaction risk map in Korea has increased to grasp potential liquefaction areas in advance. Therefore, this study examined the drilling information from the national geotechnical information DB center at the Ministry of Land, Infrastructure, and Transport to produce a liquefaction risk map, and developed a module to implement functions for basic data modeling and 3D analysis based on drilling information database extraction and information. Through this study, effective interlocking technology of the integrated database of national land information was obtained, and three-dimensional information was generated for each stage of liquefaction risk analysis, such as soil resistance value and a liquefaction risk map. In the future, the technology developed in this study can be used as a comprehensive decision support technology for establishing a foundation for building 3D liquefaction information and for establishing a response system of liquefaction.

A preliminary study on the optimum excavation sequence of a room-and-pillar underground structure (주방식 지하구조물의 최적 굴착공정에 대한 예비 분석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Hyun, Younghwan;Hwang, Jedon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • A room-and-pillar underground structure is characterized by its grid-type array of galleries. As a result, its construction and economical efficiency can be governed by excavation sequence of galleries. Therefore, this study aims to study the optimum excavation scheme of a room-and-pillar underground structure by considering its various design factors such as ground conditions and excavation sequences. Drill-and-blast method is assumed as a excavation method for a room-and-pillar underground structure. In addition, two kinds of excavation patterns corresponding to a concurrent and a sequential excavation patterns are considered in this study. For the assumed conditions, the structural stability and the construction efficiency based on the number of faces and the travel distance of a jumbo drilling machine are analyzed for the two excavation patterns. Even though the two kinds of excavation patterns show almost the same structural stability as each other, the concurrent excavation pattern is relatively preferable to the sequential excavation pattern in terms of the number of faces in operation and travel distance of a drilling jumbo.