• 제목/요약/키워드: space astrometry

검색결과 43건 처리시간 0.022초

IMAGING CAPABILITY OF THE KVN AND VERA ARRAYS (KaVA)

  • NIINUMA, KOTARO;LEE, SANG-SUNG;KINO, MOTOKI;SOHN, BON WON
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.637-639
    • /
    • 2015
  • The Korean very-long-baseline interferometry (VLBI) network (KVN) and VLBI Exploration of Radio Astrometry (VERA) Array (KaVA) is the first international VLBI array dedicated to high-frequency (23 GHz (K-band) and 43 GHz (Q-band)) observations in East Asia. To evaluate the imagine capability of KaVA, we performed imaging observations of three bright active galactic nuclei (AGNs) known for their complex morphologies: 4C 39.25, 3C 273, and M87 by KaVA at K-/Q-band. Our KaVA images reveal extended outflows with complex substructure such as knots and limb brightening, in agreement with previous observations by other VLBI facilities. Angular resolutions are better than 1.4 and 0.8 milliarcsecond (max) at K-/Q-band, respectively. KaVA achieves a high dynamic range of ~1000, more than three times the value achieved by VERA. We conclude that KaVA is a powerful array with a great potential for the study of AGN outflows, at least comparable to the best existing radio interferometric arrays.

KEY SCIENCE OBSERVATIONS OF AGNs WITH THE KaVA ARRAY

  • KINO, MOTOKI;NIINUMA, KOTARO;ZHAO, GUANG-YAO;SOHN, BONG WON
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.633-636
    • /
    • 2015
  • KaVA (KVN and VERA Array) is a new combined VLBI array composed of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). Here, we report the following two issues. (1) We review the initial results of imaging observations of M87 at 23 GHz following Niinuma et al. (2014). The KaVA images reveal extended outflows including complex substructures such as knots and limb-brightening, in agreement with previous VLBI observations. KaVA achieves a high dynamic range of ~1000, more than three times better than that achieved by VERA alone. (2) Based on subsequent observations and discussions led by the KaVA AGN SubWorking Group, we set monitoring observations of Sgr $A^{\ast}$ and M87 as our Key Science Project (hereafter KSP) because of the closeness and largeness of their central super-massive black holes. The main science goals of the KSP are (i) testing the magnetically-driven-jet paradigm by mapping velocity fields of the M87 jet, and (ii) obtaining tight constraints on physical properties of the radio emitting region in Sgr $A^{\ast}$. Towards KSP, we show the first preliminary images of M87 at 23 GHz and Sgr $A^{\ast}$ at 43 GHz with the bandwidth of 256 MHz.

DEEP-South: Performance of Moving Object Detection Program in Different Observation Modes

  • Oh, Young-Seok;Bae, Yeong-Ho;Kim, Myung-Jin;Roh, Dong-Goo;Jin, Ho;Moon, Hong-Kyu;Park, Jintae;Lee, Hee-Jae;Yim, Hong-Suh;Choi, Young-Jun
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.48.3-49
    • /
    • 2016
  • We have five different types of observation modes with regard to the Deep Ecliptic Patrol of the Southern Sky (DEEP-South); Opposition Census (OC) for targeted photometry, Sweet Spot Survey (S1) for discovery and orbit characterization of Atens and Atiras, Ecliptic Survey (S2) for asteroid family studies and comet census, NEOWISE follow-up (NW) for near simultaneous albedo measurements in the visible bands, and Target of Opportunity (TO) observation for follow-up either for unpredictable events or targets of special interests. Different exposures with such different modes result in a wide range of background noise level, the number of background stars and the mover's projected speed in each image. The Moving Object Detection Program (MODP) utilizes multiple mosaic images being taken for the same target fields at different epochs at the three KMTNet sites. MODP employs existing software packages such as SExtractor (Source-Extractor) and SCAMP (Software for Calibrating Astrometry and Photometry); SExtractor generates object catalogs, while SCAMP conducts precision astrometric calibration, then MODP determines if a point source is moving. This package creates animated stamp images for visual inspection with MPC reports, the latter for checking whether an object is known or unknown. We evaluate the astrometric accuracy and efficiency of MODP using the year one dataset obtained from DEEP-South operations.

  • PDF

DEEP-South : Moving Object Detection Experiments

  • Oh, Young-Seok;Bae, Yeong-Ho;Kim, Myung-Jin;Roh, Dong-Goo;Jin, Ho;Moon, Hong-Kyu;Park, Jintae;Lee, Hee-Jae;Yim, Hong-Suh;Choi, Young-Jun
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.75.4-76
    • /
    • 2016
  • DEEP-South (Deep Ecliptic patrol of the Southern sky) is one of the secondary science projects of KMTNet (Korea Microlensing Telescope Network). The objective of this project is twofold, the physical characterization and the discovery of small Solar System bodies, focused on NEOs (Near Earth objects). In order to achieve the goals, we are implementing a software package to detect and report moving objects in the $18k{\times}18k$ mosaic CCD images of KMTNet. In this paper, we present preliminary results of the moving object detection experiments using the prototype MODP (Moving Object Detection Program). We utilize multiple images that are being taken at three KMTNet sites, towards the same target fields (TFs) obtained at different epochs. This prototype package employs existing softwares such as SExtractor (Source-Extracto) and SCAMP (Software for Calibrating Astrometry and Photometry); SExtractor generates catalogs, while SCAMP conducts precision astrometric calibration, then MODP determines if a point source is moving. We evaluated the astrometric accuracy and efficiency of the current version of MODP. The plan for upgrading MODP will also be mentioned.

  • PDF

DEEP-South: Automated Scheduler and Data Pipeline

  • Yim, Hong-Suh;Kim, Myung-Jin;Roh, Dong-Goo;Park, Jintae;Moon, Hong-Kyu;Choi, Young-Jun;Bae, Young-Ho;Lee, Hee-Jae;Oh, Young-Seok
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.54.3-55
    • /
    • 2016
  • DEEP-South Scheduling and Data reduction System (DS SDS) consists of two separate software subsystems: Headquarters (HQ) at Korea Astronomy and Space Science Institute (KASI), and SDS Data Reduction (DR) at Korea Institute of Science and Technology Information (KISTI). HQ runs the DS Scheduling System (DSS), DS database (DB), and Control and Monitoring (C&M) designed to monitor and manage overall SDS actions. DR hosts the Moving Object Detection Program (MODP), Asteroid Spin Analysis Package (ASAP) and Data Reduction Control & Monitor (DRCM). MODP and ASAP conduct data analysis while DRCM checks if they are working properly. The functions of SDS is three-fold: (1) DSS plans schedules for three KMTNet stations, (2) DR performs data analysis, and (3) C&M checks whether DSS and DR function properly. DSS prepares a list of targets, aids users in deciding observation priority, calculates exposure time, schedules nightly runs, and archives data using Database Management System (DBMS). MODP is designed to discover moving objects on CCD images, while ASAP performs photometry and reconstructs their lightcurves. Based on ASAP lightcurve analysis and/or MODP astrometry, DSS schedules follow-up runs to be conducted with a part of, or three KMTNet telescopes.

  • PDF

DEEP-South: The Progress and the Plans of the First Year

  • Moon, Hong-Kyu;Kim, Myung-Jin;Roh, Dong-Goo;Park, Jintae;Yim, Hong-Suh;Lee, Hee-Jae;Choi, Young-Jun;Oh, Young-Seok;Bae, Young-Ho
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.48.2-48.2
    • /
    • 2016
  • The wide-field and the round-the clock operation capabilities of the KMTNet enables the discovery, astrometry and follow-up physical characterization of asteroids and comets in a most efficient way. We collectively refer to the team members, partner organizations, the dedicated software subsystem, the computing facility and research activities as Deep Ecliptic Patrol of the Southern Sky (DEEP-South). Most of the telescope time for DEEP-South is devoted to targeted photometry of Near Earth Asteroids (NEAs) to push up the number of the population with known physical properties from several percent to several dozens of percent, in the long run. We primarily adopt Johnson R-band for lightcurve study, while we employ BVI filters for taxonomic classification and detection of any possible color variations of an object at the same time. In this presentation, the progress and new findings since the last KAS meeting will be outlined. We report DEEP-South preliminary lightcurves of several dozens of NEAs obtained at three KMTNet stations during the first year runs. We also present a physical model of asteroid (5247) Krylov, the very first Non principal Axis (NPA) rotator that has been confirmed in the main belt (MB). A new asteroid taxonomic classification scheme will be introduced with an emphasis on its utility in the LSST era. The progress on the current version of automated mover detection software will also be summarized.

  • PDF

DIGITIZED SKY SURVEY I 자료의 검색 DB 구축 (CONSTRUCTION OF DATABASE FOR THE DIGITIZED SKY SURVEY I DATA)

  • 성현일;;김상철;김봉규;임인성;안영숙;손상모;양홍진
    • 천문학논총
    • /
    • 제20권1호
    • /
    • pp.55-62
    • /
    • 2005
  • The First Generation Digitized Sky Survey (DSS-I) is a collection of digitized photographic atlases of the night sky taken from the Palomar Observatory (northen sky) and the Anglo-Australian Observatory (southern sky). DSS-I is widely used by the astronomical community for a number of applications including object cross-identification and astrometry. However, accessing and retrieving the actual images are nontrivial owing to the huge size (> 60 GB) of the dataset. To facilitate retrieval process of DSS-I data for the public, Korean Astronomical Data Center (KADC) developed a web application that provides not only data retrieval but also visualization functions. The web application consists of several modules developed using Java Applet, Jave Servlet, and JaveServer Pages (JSP) technologies. It allows users to retrieve images efficiently in various formats such as FITS, JPEG, GIF, and TIFF, and also offers an interactive visulization tool, ImgViewer, for displaying/analyzing FITS images. To use the web application, users require a Java-enabled web browser.

VLBI TRF Combination Using GNSS Software

  • Kwak, Younghee;Cho, Jungho
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권4호
    • /
    • pp.315-320
    • /
    • 2013
  • Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of $13.8^{\circ}$ (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of $3.7^{\circ}$ (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of $10.3^{\circ}$ (2.9%).

MICROLENS MASSES FROM 1-D PARALLAXES AND HELIOCENTRIC PROPER MOTIONS

  • Gould, Andrew
    • 천문학회지
    • /
    • 제47권6호
    • /
    • pp.215-218
    • /
    • 2014
  • One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

NEW PHOTOMETRIC PIPELINE TO EXPLORE TEMPORAL AND SPATIAL VARIABILITY WITH KMTNET DEEP-SOUTH OBSERVATIONS

  • Chang, Seo-Won;Byun, Yong-Ik;Shin, Min-Su;Yi, Hahn;Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Cha, Sang-Mok;Lee, Yongseok
    • 천문학회지
    • /
    • 제51권5호
    • /
    • pp.129-142
    • /
    • 2018
  • The DEEP-South (the Deep Ecliptic Patrol of the Southern Sky) photometric census of small Solar System bodies produces massive time-series data of variable, transient or moving objects as a by-product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques for faster access to a portion of the DEEP-South year-one data. Our new pipeline is designed to perform automated point source detection, robust high-precision photometry and calibration of non-crowded fields which have overlap with previously surveyed areas. In this paper, we show some examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discover 21 new periodic variables with period ranging between 0.1 and 31 days, including four eclipsing binary systems (detached, over-contact, and ellipsoidal variables), one white dwarf/M dwarf pair candidate, and rotating variable stars. We also recover astrometry (< ${\pm}1-2$ arcsec level accuracy) and photometry of two targeted near-earth asteroids, 2006 DZ169 and 1996 SK, along with the small- (~0.12 mag) and relatively large-amplitude (~0.5 mag) variations of their dominant rotational signals in R-band.