• Title/Summary/Keyword: space and time scale

Search Result 577, Processing Time 0.027 seconds

Dynamic Extinction of Solid Propellants by Depressurization of Combustion Chamber (연소실 압력 강하에 의한 고체 추진제의 동적 소화)

  • Jeong, Ho-Geol;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2002
  • Dynamic extinction of solid propellants subjected to rapid pressure drop was studied with the aid of energy equation of condensed phase and flame model in gas phase. It is found that the total residence time($\tau_\gamma$) which measures the residing time of fuel in the reaction zone may play a crucial role in determining the dynamic response of the combustuion to extinction. Residence time was modeled by various combinations of diffusion and chemocal kinetic time scale. Effect of pressure history coupled with chamber volume on the extinction response was also performed and was found that dynamic extinction is more susceptible in a confined chamber than in open geometry. And, dynamic extinction was revealed to be affected profoundly by diffysion time scale rather than chemical kinetic time scale.

A Fast Adaptive Corner Detection Based on Curvature Scale Space

  • Nguyen, Van Hau;Woo, Kyung-Haeng;Choi, Won-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.622-631
    • /
    • 2011
  • Corners play an important role in describing object features for pattern recognition and identification. This paper proposed a fast and adaptive corner detector in both coarse and fine scale, followed by the framework of the curvature scale space (CSS). An adaptive curvature threshold and evaluating of angles of corner candidates are added to original CSS to remove round corners and false corners in the detecting process. The efficiency of proposed method is compared to other popular detectors in both accuracy criteria, stability and time consuming. Results illustrate that the proposed method performs extremely surpass in both areas.

Ultrastructure on the Forming of the Scale and Socket in the Wing of the Pieris rapae L. (배추흰나비(Pieris rapae L.) 날개의 인편(鱗片)과 소켓트의 형성(形成)에 관한 미세구조(微細構造))

  • Kang, Seong-Hoon;Kim, Chang-Shik;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.27-42
    • /
    • 1989
  • The forming process of scale and socket of Pieris rapae L. during in 30 hr. pupa to in adult was morphologically investigated with scanning electron microscopy and transmission electron microscopy. 1. The scale forming cells which were distinguished from other epidermal cells were first observed in 30 hr. pupa. In the aspect that scale forming cell beared some morphological relations to socket forming cells and in the distribution of its organelles, scale forming cell was divided into three regions-basal region in which nucleus located, neck region which was surrounded by socket forming cells and scale region that was the cytoplasmic projection region over the wing surface. In process of the development of scale forming cell neck region and scale region were extended into the molting space and at this time, the changes of surface structure of scale region have occurred initially. 2. There was a more distinct process that scale region changed into the scale. Scale region which was first originated as clublike projection of the cell body was subsequently elongated and flattened out by broadening of the cytoplasm. After that, in the surface of scale were formed longitudinal ridges and microribs. In the late pupa, the cytoplsam of scale region have autolyzed by lysosome-like bodies and at length, scale which had air spaces, trabecula, pigment granules, longitudinal ridges and transverse ridges. 3. The major protion of socket forming cell located beside neck region of scale forming cell under the wing surface but the processing portion of the cell lay over the wing surface, suggesting that socket forming cells have actively processing. In extending to the molting space of neck and scale region, socket forming cells developed to the molting space and constructed socket.

  • PDF

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

Search for Very Fast Variability in AGN Radio Light Curves

  • Lee, Taeseok;Trippe, Sascha;Sohn, Bong Won;Lee, Sang-Sung;Byun, Do-Young;Oh, Junghwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2013
  • We present here the preliminary results of the fast variability of AGN radio light curves. The shortest time scale of minute in AGN light curves is needed to probe the AGN activity for a few reasons; First, to check if there is any kind of shortest time scale activity. Secondly, to find out what high frequency end of AGN spectra look like. For the last, to see the time delay at several wavelength bands and the change of the spectral index with time. The observation was conducted with three KVN(Korea VLBI Network) antennas with single dish cross scan mode. In order not to lose the target at any given time, whenever one station needs to observe the calibrator, the other station is on the target. Though the detailed data reduction is still going on, there might exist varying feature in the radio light curve. The more fine calibration will be done in near future and another good data set is ready for the reduction.

  • PDF

Effects of multiple driving scales on incompressible turbulence

  • Yoo, Hyun-Ju;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.75.2-75.2
    • /
    • 2012
  • Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium and intracluster medium. To maintain turbulent motion, energy must be injected into the fluids. In turbulence studies, it is customary to assume that the fluid is driven on a scale, but there can be many different driving mechanisms that act on different scales in astrophysical fluids. We expect different statistical properties of turbulence between turbulence with single driving scale and turbulence with double driving scales. In this work, we perform 3-dimensional incompressible MHD turbulence simulations with energy injection in two ranges, 2${\surd}$12 (large scale) and 15

  • PDF

Multi-scale coherent structures and their role in the energy cascade in homogeneous isotropic turbulence

  • Goto, Susumu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.355-358
    • /
    • 2008
  • In order to investigate the physical mechanism of the energy cascade in homogeneous isotropic turbulence, we introduce Galilean-invariant energy and its transfer rate in the real space as a function of position, time and scale. By using a database of direct numerical simulations (DNS) of homogeneous isotropic turbulence, it is shown that (i) fully developed turbulence consists of multi-scale coherent vortices of tubular shapes, (ii) the energy at each scale is mainly confined in vortex tubes with the radii of the same order of the length scale, and (iii) the energy transfer takes place around pairs (especially, anti-parallel pairs) of such vortex tubes. Based on these observations, it is suggested that the energy cascade can be caused, in the real space, by the process of the stretching and creation of smaller (i.e. thinner) vortex tubes by the straining field around pairs of larger (i.e. fatter) vortex tubes. Indeed, it is quite easy to find such events (in our DNS fields) which strongly support this scenario of the energy cascade.

  • PDF

Multi-scale coherent structures and their role in the energy cascade in homogeneous isotropic turbulence

  • Goto, Susumu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.355-358
    • /
    • 2008
  • In order to investigate the physical mechanism of the energy cascade in homogeneous isotropic turbulence, we introduce Galilean-invariant energy and its transfer rate in the real space as a function of position, time and scale. By using a database of direct numerical simulations (DNS) of homogeneous isotropic turbulence, it is shown that (i) fully developed turbulence consists of multi-scale coherent vortices of tubular shapes, (ii) the energy at each scale is mainly confined in vortex tubes with the radii of the same order of the length scale, and (iii) the energy transfer takes place around pairs (especially, anti-parallel pairs) of such vortex tubes. Based on these observations, it is suggested that the energy cascade can be caused, in the real space, by the process of the stretching and creation of smaller (i.e. thinner) vortex tubes by the straining field around pairs of larger (i.e. fatter) vortex tubes. Indeed, it is quite easy to find such events (in our DNS fields) which strongly support this scenario of the energy cascade.

  • PDF

Search for Very Fast Variability in AGN Radio Light Curves

  • Lee, Taeseok;Trippe, Sascha;Sohn, Bong Won;Lee, Sang-Sung;Byun, Do-Young;Oh, Junghwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.43.2-43.2
    • /
    • 2013
  • AGN are known for irregular variability on all time scales, down to intra-day variability with relative variations of a few percent within minutes to hours. In the shortest time scale of AGN activity, unexplored territory still exists: first, the existence of a shortest time scale of AGN activity and secondly the shape of high frequency end of AGN power spectrum. Also the spectral variations at the shortest timescale. Here, we present the preliminary results of AGN fast photometry performed with Korean VLBI Network(KVN). Observations were done in a 'anti-correlated' mode using two antennas, with always either one antenna pointing at the target. This results in an effective time resolution of 3 minutes. We used all four KVN frequencies, 22, 43, 86, and 129 GHz, in order to trace spectral variability. We have been able to derive high-quality light curves for 3C111 and 3C279 at 22 and 86 GHz observed on 31st of May and 30th of Nov. in 2012. We are currently performing detailed statistical analysis in order to assess the levels of variability or the corresponding upper limits.

  • PDF

How the Sun generates "killer electrons" in near-Earth space

  • Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.29-29
    • /
    • 2014
  • A fundamental problem in space physics is to explain the origin of energetic charged particles in space close to the Earth and the significant temporal variations of their flux. The particles are primarily electrons and protons although energetic heavy ions such as O+ are sometimes non-negligible. By "energetic" we mean a rather broad energy range of particles from a few tens of keV to well above MeV. Drastic variations of the particle fluxes (by >3 orders of magnitude) occur over both a short time scale like a few minutes and a long time scale like the 11-year sunspot cycle. In this talk I will focus on relativistic energy electrons (~MeV) trapped within the Earth's magnetosphere. They are a primary element of the space weather since they can cause damage to satellites, so often called "killer electrons". Considering that the source particles in both the solar wind and the ionosphere are relatively cold (~eV), the quasi-permanent existence of these very energetic particles close to the Earth has been a surprise to space physicists for decades. Complex electromagnetic processes such as wave-particle interactions within the magnetosphere are believed to play a major role in generating these killer electrons. While detailed physics remains an active research area, for this lecture I will introduce a synthesized picture of how solar activities are related to wave-particle interaction physics inside the magnetosphere. This can be applied to other astrophysical systems.

  • PDF