• 제목/요약/키워드: space Vector Modulation

검색결과 324건 처리시간 0.027초

Sliding Mode Control Based DTC of Sensorless Parallel-Connected Two Five-Phase PMSM Drive System

  • Kamel, Tounsi;Abdelkader, Djahbar;Said, Barkat;Al-Hitmi, M.;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1185-1201
    • /
    • 2018
  • This paper presents a sensorless direct torque control (DTC) combined with sliding mode approach (SM) and space vector modulation (SVM) to achieve mainly a high performance and reduce torque and flux ripples of a parallel-connected two five-phase permanent magnet synchronous machine (PMSM) drive system. In order to increase the proposed drive robustness and decrease its complexity and cost, the rotor speeds, rotor positions, fluxes as well as torques are estimated by using a sliding mode observer (SMO) scheme. The effectiveness of the proposed sliding mode observer in conjunction with the sliding mode control based DTC is confirmed through the application of different load torques for wide speed range operation. Comparison between sliding mode control and proportional integral (PI) control based DTC of the proposed two-motor drive is provided. The obtained speeds, torques and fluxes responses follow their references; even in low and reverse speed operations, load torques changes, and machines parameters variations. Simulation results confirm also that, the ripples of the torques and fluxes are reduced more than 3.33% and 16.66 %, respectively, and the speed overshoots and speed drops are reduced about 99.85% and 92.24%, respectively.

A Bidirectional Single-Stage DC/AC Converter for Grid Connected Energy Storage Systems

  • Chen, Jianliang;Liao, Xiaozhong;Sha, Deshang
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1026-1034
    • /
    • 2015
  • In this paper, a unified control strategy using the current space vector modulation (CSVM) technique is proposed and applied to a bidirectional three-phase DC/AC converter. The operation of the converter changes with the direction of the power flow. In the charging mode, it works as a buck type rectifier; and during the discharging mode, it operates as a boost type inverter, which makes it suitable as an interface between high voltage AC grids and low voltage energy storage devices. This topology has the following advantages: high conversion efficiency, high power factor at the grid side, tight control of the charging current and fast transition between the charging and discharging modes. The operating principle of the mode analysis, the gate signal generation, the general control strategy and the transition from a constant current (CC) to a constant voltage (CV) in the charging mode are discussed. The proposed control strategy has been validated by simulations and experimental results obtained with a 1kW laboratory prototype using supercapacitors as an energy storage device.

FPGA를 활용한 SVPWM방식의 정현파 BLDC 모터 구동 로직 설계 및 구현 (Design and implementation of BLDC motor drive logic using SVPWM method with FPGA)

  • 전병찬;박원기;이성철;이현영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.652-654
    • /
    • 2016
  • 본 논문에서는 FPGA를 활용하여 SVPWM (Space Vector Pulse Width Modulation)방식의 정현파 BLDC 모터 구동 로직을 설계 및 구현하였다. Hall sensor를 이용한 BLDC 모터 구동 회로는 정현파 PWM 생성회로, 데드타임 회로 및 리드 앵글 생성 회로 등으로 구성 된다. 특히 PWM 생성 회로는 SVPWM방식을 이용하여 기존 정현파 PWM 대비 선형구간이 15.5% 증가된다. 설계한 회로는 VHDL을 이용하여 모의실험 하였으며 Xilinx Spartan-6 FPGA보드를 통하여 회로의 동작 및 성능을 검증하였다. 검증 결과 모터구동 전류의 THD (Total Harmonic Distortion)은 19.32% 로 기존 정현파 구동 회로 대비 우수한 특성을 보였으며 회전자 분해능은 $1.6^{\circ}$로 정밀 제어가 가능함을 확인하였다.

  • PDF

단전원 듀얼 인버터의 데드타임으로 인한 영상전류 억제 방법 (Suppression of Zero Sequence Current Caused by Dead-time for Dual Inverter With Single Source)

  • 윤범렬;김태형;이준희;이준석
    • 전력전자학회논문지
    • /
    • 제27권2호
    • /
    • pp.126-133
    • /
    • 2022
  • This study proposes a suppression of zero sequence current (ZSC), which is caused by zero sequence voltage (ZSV) for a dual two-level inverter with single DC bus. Large output voltages enable the dual inverter with single DC bus to improve a system efficiency compared with single inverter. However, the structure of dual inverter with single DC bus inevitably generates ZSC, which reduces the system efficiency and causes a current ripple. ZSV is also produced by dead time, and its magnitude is determined by the DC bus and current direction. This study presents a novel space vector modulation method that allows the instantaneous suppression of ZSC. Based on a condition where a switching period is twice a sampling (control) period, the proposed control method is implemented by injecting the offset voltage at the primary inverter. This offset voltage is injected in half of the switching period to suppress the ZSC. Simulation and experiments are used to compare the proposed and conventional methods to determine the ZSC suppression performance.

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

Stability Analysis of FCHEV Energy System Using Frequency Decoupling Control Method

  • Dai, Peng;Sun, Weinan;Xie, Houqing;Lv, Yan;Han, Zhonghui
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.490-500
    • /
    • 2017
  • Fuel cell (FC) is a promising power supply in electric vehicles (EV); however, it has poor dynamic performance and short service life. To address these shortcomings, a super capacitor (SC) is adopted as an auxiliary power supply. In this study, the frequency decoupling control method is used in electric vehicle energy system. High-frequency and low-frequency demand power is provided by SC and FC, respectively, which makes full use of two power supplies. Simultaneously, the energy system still has rapidity and reliability. The distributed power system (DPS) of EV requires DC-DC converters to achieve the desired voltage. The stability of cascaded converters must be assessed. Impedance-based methods are effective in the stability analysis of DPS. In this study, closed-loop impedances of interleaved half-bridge DC-DC converter and phase-shifted full-bridge DC-DC converter based on the frequency decoupling control method are derived. The closed-loop impedance of an inverter for permanent magnet synchronous motor based on space vector modulation control method is also derived. An improved Middlebrook criterion is used to assess and adjust the stability of the energy system. A theoretical analysis and simulation test are provided to demonstrate the feasibility of the energy management system and the control method.

Frequency Synchronization of Three-Phase Grid-Connected Inverters Controlled as Current Supplies

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin;Yin, Jing
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1347-1356
    • /
    • 2018
  • In a three-phase system, three-phase AC signals can be translated into two-phase DC signals through a coordinate transformation. Thus, the PI regulator can realize a zero steady-state error for the DC signals. In the control of a three-phase grid-connected inverter, the phase angle of grid is normally detected by a phase-locked loop (PLL) and takes part in a coordinate transformation. A novel control strategy for a three-phase grid-connected inverter with a frequency-locked loop (FLL) based on coordinate transformation is proposed in this paper. The inverter is controlled as a current supply. The grid angle, which takes part in the coordinate transformation, is replaced by a periodic linear changing angle from $-{\pi}$ to ${\pi}$. The changing angle has the same frequency but a different phase than the grid angle. The frequency of the changing angle tracks the grid frequency by the negative feedback of the reactive power, which forms a FLL. The control strategy applies to non-ideal grids and it is a lot simpler than the control strategies with a PLL that are applied to non-ideal grids. The structure of the FLL is established. The principle and advantages of the proposed control strategy are discussed. The theoretical analysis is confirmed by experimental results.

Design and Implementation of Direct Torque Control Based on an Intelligent Technique of Induction Motor on FPGA

  • Krim, Saber;Gdaim, Soufien;Mtibaa, Abdellatif;Mimouni, Mohamed Faouzi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1527-1539
    • /
    • 2015
  • In this paper the hardware implementation of the direct torque control based on the fuzzy logic technique of induction motor on the Field-Programmable Gate Array (FPGA) is presented. Due to its complexity, the fuzzy logic technique implemented on a digital system like the DSP (Digital Signal Processor) and microcontroller is characterized by a calculating delay. This delay is due to the processing speed which depends on the system complexity. The limitation of these solutions is inevitable. To solve this problem, an alternative digital solution is used, based on the FPGA, which is characterized by a fast processing speed, to take the advantage of the performances of the fuzzy logic technique in spite of its complex computation. The Conventional Direct Torque Control (CDTC) of the induction machine faces problems, like the high stator flux, electromagnetic torque ripples, and stator current distortions. To overcome the CDTC problems many methods are used such as the space vector modulation which is sensitive to the parameters variations of the machine, the increase in the switches inverter number which increases the cost of the inverter, and the artificial intelligence. In this paper an intelligent technique based on the fuzzy logic is used because it is allows controlling the systems without knowing the mathematical model. Also, we use a new method based on the Xilinx system generator for the hardware implementation of Direct Torque Fuzzy Control (DTFC) on the FPGA. The simulation results of the DTFC are compared to those of the CDTC. The comparison results illustrate the reduction in the torque and stator flux ripples of the DTFC and show the Xilinx Virtex V FPGA performances in terms of execution time.

삼각파 비교 PWM 기법에 있어서 단일 전류센서에 의한 삼상 전류 측정 및 전압 왜곡 보상 (The Measurement of 3-Phase Current with Single Current Sensor and the Compensation of Voltage Distortion in Carrier-Based PWM Technique)

  • 김경서
    • 전력전자학회논문지
    • /
    • 제8권3호
    • /
    • pp.292-298
    • /
    • 2003
  • 교류전동기의 가변속 운전에 사용되는 삼상 인버터에는 두개 또는 세개의 전류센서가 장착되며 이를 이용하여 삼상 교류전류를 측정한다. 전류센서의 갯수를 줄이기 위하여 개발된 것이 직류링크에 한개의 전류센서로 직류전류를 측정하고 측정된 전류 값과 스위칭 상태로부터 삼상 교류전류를 추정하는 방법이다. 전류를 정확히 측정하려면 스위칭 상태가 최소 측정시간 이상 유지되어야 하며, 이를 위한 펄스폭 조정과 이에 따른 전압 왜곡의 보상 방법이 연구되어 왔다. 그러나 기존에 발표된 방식들은 공간벡터 전압변조법에는 적합하지만 산업체에서 널리 쓰이는 펄스폭 변조 방식인 삼각파 비교법에 적용하기에는 어려운 면이 많다. 본 연구에서는 삼각파 비교법에 적합한 전류 측정 방식과 전압왜곡 보상 방식을 제안하고 이의 타당성을 실험을 통하여 검증하였다.

A Hierarchical Model Predictive Voltage Control for NPC/H-Bridge Converters with a Reduced Computational Burden

  • Gong, Zheng;Dai, Peng;Wu, Xiaojie;Deng, Fujin;Liu, Dong;Chen, Zhe
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.136-148
    • /
    • 2017
  • In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector modulation (SVM) is proposed. By the hierarchical structure of different cost functions, load currents can be controlled well and common mode voltage can be maintained at low values. The proposed strategy could be easily expanded to the systems with high number of voltage levels while the amount of required calculation is significantly reduced and the advantages of the conventional FCS-MPC strategy are reserved. In addition, a HMPVC-based field oriented control scheme is applied to a drive system with the NPC/H-Bridge converter. Both steady-state and transient performances are evaluated by simulations and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy.