• 제목/요약/키워드: soybean-urease induced carbonate precipitation (EICP)

검색결과 3건 처리시간 0.015초

Biocementation via soybean-urease induced carbonate precipitation using carbide slag powder derived soluble calcium

  • Qi, Yongshuai;Gao, Yufeng;Meng, Hao;He, Jia;Liu, Yang
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.79-90
    • /
    • 2022
  • Soybean-urease induced carbonate precipitation (EICP), as an alternative to microbially induced carbonate precipitation (MICP), was employed for soil improvement. Meanwhile, soluble calcium produced from industrial waste carbide slag powder (CSP) via the acid dissolution method was used for the EICP process. The ratio of CSP to the acetic acid solution was optimized to obtain a desirable calcium concentration with an appropriate pH. The calcium solution was then used for the sand columns test, and the engineering properties of the EICP-treated sand, including unconfined compressive strength, permeability, and calcium carbonate content, were evaluated. Results showed that the properties of the biocemented sand using the CSP derived calcium solution were comparable to those using the reagent grade CaCl2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that spherical vaterite crystals were mainly formed when the CSP-derived calcium solution was used. In contrast, spherical calcite crystals were primarily formed as the reagent grade CaCl2 was used. This study highlighted that it was effective and sustainable to use soluble calcium produced from CSP for the EICP process.

EICP 공법을 활용한 황산염 농도 저감 분석 (Analysis of Sulfate Concentration Reduction Using Enzyme Induced Carbonate Precipitation Technique)

  • 김정훈;김대현;윤태섭
    • 한국지반공학회논문집
    • /
    • 제39권8호
    • /
    • pp.7-16
    • /
    • 2023
  • 본 연구는 매립지 침출수 내 황산염 농도를 저감하기 위해 친환경 지반개량 공법인 Enzyme Induced Carbonate Precipitation(EICP) 공법을 활용하였다. 황산염의 화학적 침전을 유도하기 위해 충분한 탄산칼슘을 생성함과 동시에 여분의 칼슘 이온을 남길 수 있는 최적의 EICP 혼합비가 계산되었다. 최적 혼합비로 처리된 사질토 시편에서 황산염 침전이 전단 강성도에 미치는 영향을 확인하고자 전단파 속도를 측정하였고 전단파 속도 측정은 EICP 반응 및 황산염 반응 시간동안 수행되었다. 실험 결과, 생성된 침전물에 따른 전단 강성도의 발달을 확인하였고 주사전자현미경(SEM)으로 침전물의 유형 및 패턴을 시각적으로 관찰하였다. 고순도 우레아제의 대체제로서 백태가루를 효소로 사용한 EICP 용액의 경우 고순도 EICP 용액과 동일한 탄산칼슘 생성 효율에서 보다 낮은 황산염 제거 효율을 보였는데 이는 백태가루에 포함된 불순물이 석고의 침전을 방해하기 때문이다.

Characteristics of soybean urease induced CaCO3 precipitation

  • Zhu, Liping;Lang, Chaopeng;Li, Bingyan;Wen, Kejun;Li, Mingdong
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.281-289
    • /
    • 2022
  • Bio-CaCO3 is a blowout environment-friendly materials for soil improvement and sealing of rock fissures. To evaluate the chemical characteristics, shape, size and productivity of soybean urease induced CaCO3 precipitates (SUICP), experimental studies were conducted via EDS, XRD, FT-IR, TGA, BET, and SEM. Also, the conversion rate of SUICP reaction at different time were determined and analyzed. The Bio-CaCO3 product obtained by SUICP is comprehensively judged as calcite based on the results of EDS, XRD and FT-IR. The SUICP calcite precipitates are detected as spherical or ellipsoidal particles 3-6 ㎛ in diameter with nanoscale pores on their surface, and this morphology is novel. The median secondary particle size d50 is 39-88 ㎛, indicating the agglomeration of the primary calcite particles. The Bio-calcite decomposes at 650-780℃, representing a medium thermal stability. The conversion rate of SUICP reaction can reach 80% in 24h, which is much more efficient than microbially induced CaCO3 precipitation. These results reveal the knowledges of SUICP, and further direct its engineering applications. Moreover, we show an economic channel to obtain porous spherical calcite.