• Title/Summary/Keyword: soybean soil

Search Result 572, Processing Time 0.034 seconds

Studies on the Characteristics of Phosphorus in the Upland Soil -III. Yield Responses of Added Phosphorus for Soybean in Soils with Different Capacities of Phosphorus Sorbed (경작지(耕作地) 전토양(田土壤)의 인산특성(燐酸特性)에 관(關)한 연구(硏究) -III. 인산(燐酸) 흡수력(吸收力)이 상이(相異)한 밭토양(土壤)에서 대두(大豆)에 대(對)한 시용인산(施用燐酸)의 비효(肥效))

  • Shin, Cheol-Woo;Kim, Jeong-Je;Yoon, Jung-Hui
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.272-279
    • /
    • 1988
  • A pot experiment was conducted to define the effect of various soil phosphorus fractions for soybean yield and the relations of between various soil phosphorus fraction and each other in 11 upland soils with different capacities of phosphorus fixation and physico-chemical properties of soils. The effect of phosphorus fertilization was high in soils with high capacities of phosphorus fixation and low available phosphorus, and soybean yield was showed significant relationship with available phosphorus and inorganic soil phosphorus fractions. Fractional recovery of added phosphorus in soils were showed various range of 2.5-91.7%, and mean value of soils was 48.5%. In the relationships among the soybean yield, plant phosphorus content, phosphorus uptake and available phosphorus, inoganic phosphorus at flowering stage, soybean yield were showed significant relationship with available phosphorus content, phosphorus uptake were all showed significant correlation without Fe-P, but Fe-P was showed except Jeju soil. Al-P/Fe-P ratio was increased by phosphorus fertilization in soils at flowering stage, and in the relationships between Al-P/Fe-P ratio and soybean yield, phosphorus uptake, soil and plant phosphorus were showed high significant correlation, but Fe-P was not showed at flowering stage. P sorbed by soils from P 20ppm solution was decreased by phosphorus fertilization, and then decreasing rate was higher in soils with low capacity of phosphorus fixation then high phosphorus fixing soils. Also P sorbed was showed negatively high significant correlation with available phosphorus, plant phosphorus, phosphorus uptake and soil inorganic phosphours except Fe-P, and soybean yield was not showed.

  • PDF

Rate and method of application for phosphorus and the effect of wollastonite on Volcanic ash soil (화산회토양(火山灰土壤)에서의 인산(燐酸)의 시용량(施用量)과 시비법(施肥法) 및 규회석(硅灰石)의 효과)

  • Ryu, In Soo;Yoon, Jung Hui;Kim, In Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.1
    • /
    • pp.25-30
    • /
    • 1978
  • Field experiments were conducted on the cropping system soybean-barley-soybean to investigate the effect of phosphorus and wollastonite application, effective application methods of phosphrus, and their residual effect in a typical Jeju island volcanic ash soil when the fertilizers were applied to the first crop of the three crops sequence. The results are summarized as follows. 1. Response of phosphorus was higher for barley than for soybean. The maximum application rate of phosphate was extimated to be 10-20kg/l0a for cultivation of soybean first crop) and 100kg/l0a for barley (second crop). Barley yield under 100kg/l0a of phosphate was double as compared to the no phosphate plot. 2. With application of 100kg/10a phosphate at the sowing time of soybean, the available phosphate in the soil after harvesting of soybean was increased to 175ppm but decreased to 60 ppm by cultivation of barley (second crop.) On the other hand, the phosphate absorption coefficient was 1,146mg/100g after soybean harvest but increased to 1,764mg/100g after barley harvest. 3. High residual effect was found in the plot to which phosphate applied with compost in the sowing band. 4. Response to wollastonite under heavy application of phosphate was high and residual effect was also great. 5. Response of soybean to wollastonite was higher than that of barley. Application of wollastonite increased the yield of all three crops soybean (first crop) by 30%, barley (second crop) by 12% and soybean (third) by 20%, respectively. Highest yield was obtained from the 1,000kg/10a wollastonite treatment for soybean and 500kg/l0a for barley.

  • PDF

Effect of the Application of Carbonized Biomass from Crop Residues on Soil Chemical Properties and Carbon Pools

  • Lee, Sun-Il;Park, Woo-Kyun;Kim, Gun-Yeob;Choi, Yong-Su
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.549-555
    • /
    • 2015
  • Objective of this study was to investigate the effect of carbonized biomass from crop residues on chemical properties of soil and soil carbon pools during soybean cultivation. The carbonized biomass was made by field scale mobile pyrolyzer. A pot experiment with soybean in sandy loam soil was conducted for 133 days in a greenhouse, by a completely randomized design with three replications. The treatments consisted of four levels including the control without input and three levels of carbonized biomass inputs of $9.75Mg\;ha^{-1}$, C-1 ; $19.5Mg\;ha^{-1}$, C-2 ; $39Mg\;ha^{-1}$, C-3. Soil samples were collected and analyzed pH, EC, TC, TN, inorganic-N, available phosphorus and exchangeable cations of the soils. Soil pH, Total-N and available phosphorus contents correspondingly increased with increasing the carbonized material input. The contents of soil carbon pools were $19.04Mg\;C\;ha^{-1}$ for C-1, $26.19Mg\;C\;ha^{-1}$ for C-2, $33.62Mg\;C\;ha^{-1}$ for C-3 and $12.01Mg\;C\;ha^{-1}$ for the control at the end of experiment, respectively. Increased contents of soil carbon pools relative to the control were estimated at $7.03Mg\;C\;ha^{-1}$ for C-1, $14.18Mg\;C\;ha^{-1}$ for C-2 and $21.62Mg\;C\;ha^{-1}$ for C-3 at the end of experiment, respectively, indicating that the soil carbon pools were increased with increasing the input rate of the carbonized biomass. Consequently, it seems that the carbonized biomass derived from the agricultural byproducts such as crop residues could increase the soil carbon pools and that the experimental results will be applied to the future study of soil carbon sequestration.

Runoff Pattern in Upland Soils with Various Soil Texture and Slope at Torrential Rainfall Events (집중강우시 우리나라 밭토양의 토성과 경사에 따른 물유출 양상)

  • Jung, Kang-Ho;Hur, Seung-Oh;Ha, Sang-Geon;Park, Chan-Won;Lee, Hyun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.208-213
    • /
    • 2007
  • When overland flow water is small and slow, it moves down a stream slowly and we use it as available resource. However, it could not only be good for nothing but arouse an inundation if a lot of runoff pour down to stream at a torrential rain. So it is important to know how much water to flow out and be stored in soil and on land in order to predict a flood and conserve soil and water quality. We intended to develop the prediction model of runoff in upland at a torrential rain and conducted lysimeter study in soybean cultivation and bare soil with 3 slopeness, 3 slope length and 5 soil texture from 1985 to 1991. The data of rainfall and runoff were used when daily rainfall was over 80 mm, the level of torrential rain warning. Minimum rainfall occurring runoff (MROR) was dependent on surface coverage and slope length. However soil texture and slopeness had a little influence on MROR. Runoff after MROR increased in proportion to precipitation which depended on surface coverage, soil texture and slope. Runoff ratio was larger in fine texture and bare soil than coarse soil and soybean coverage. Runoff ratio was in proportion to a square root of slope angle(radian) and reduced with slope length to converge a certain value. From these basis, we developed the prediction model following as $$Runoff(mm)=a(s^{0.5}+l^b)(Rainfall(mm)-80(1-e^{-bl}))$$ where a is a coefficient relevant soil hydraulic properties, b is a surface coverage coefficient, s is a slope angle and l is a slope length. The coefficient a was 0.5 in sandy loam and 0.6 in clay, and b was 0.06 in bare soil and 0.5 in soybean cultivation.

The Effect of Long-term Application of different Organic Material Sources on Soil Physical Property and Microflora of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 물리성 및 미생물상 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Sang-Bok;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.365-372
    • /
    • 2001
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil physical properties and microorganism in upland soils. Field experiments were conducted in the loam and sandy loam soils, while the clay loam and sandy loam soils were used for laboratory experiments. Various kinds of composts such as poultry manure compost(PMC). cow manure compost(CMC). human excrement sludge(HES), and food industrial sludge compost(FISE) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : Bulk density of loam soil decreased with compost application to $1.07{\sim}1.32Mg\;m^{-3}$ compared with $1.49Mg\;m^{-3}$ of control plot, while in sandy loam soil it decreased to $1.00{\sim}1.20Mg\;m^{-3}$ compared with $1.25Mg\;m^{-3}$ of control plot. Bulk density of soil was decreased according to maize cultivation compared with bare control, but soybean cultivation was similar. Population of organic material decomposing microorganisms was increased rapidly at the initial incubation stage at $25^{\circ}C$, and increased more sensitively at the loam soil than sandy loam soil. In the case of the change of microorganisms associated with nitrogen circulation, ammonia oxidizing bacteria was more at the initial incubation stage, and denitrifying bacteria was more at the initial incubation stage, and denitrifying bacteria increased until 1~4 weeks after incubation and increased more at the loam soil than sandy loam soil.

  • PDF

Effect of Intercropping of Spring-Sowing Rye for Organic Soybean Cultivation (콩 유기재배시 춘파호밀 간작의 효과)

  • Yoon, Deok-Hoon;Nam, Ki-Woong
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.4
    • /
    • pp.529-538
    • /
    • 2009
  • This study was conducted to investigate the sowing time and sowing methods of the Rye(Secale cereale L.) for an organic soybean farming system. It can be seen that there was no significantly differences on soil chemical properties in the rhizosphere due to the Rye's sowing season. A soil chemical properties due to the Rye's sowing date in spring, O.M.(g $kg^{-1}$) contents was increased at a late Rye's sowing dat, while on the other pH, Avail. $P_2O_5$(mg $kg^{-1}$) and CEC(cmol+ $kg^{-1}$) were decreased. A highest yields of soybean was achieved at the plot which the Rye was sowed on 20th March with two-line, 5 row and 70cm row-space.

  • PDF

Soybean Growth and Yield as Affected by Spacing of Drainage Furrows in Paddy Field

  • Cho, Jin-Woong;Lee, Jung-June;Oh, Young-Jin;So, Jung-D.;Won, Jun-Yeon;Kim, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • This study was conducted to determine the optimum number of inter-rows according to distance of drainage furrow (DF) for running-off excessive-water stress (EWS) in paddy field. The most soil water potential was shown in high ridge (distance of DF by 70 cm) cultivation and the soil water potential showed increasing tendency in over four inter-rows cultivation by DF. The growth of soybean reduced by extended inter-row and its reducing level was high, especially, over four inter-rows (DF distance by 2.8 m) because of EWS. The photosynthetic rate decreased in the more extensive field by distance of DF at V5 and R2 stages, especially, in over four interrows cultivation. Also, root activity decreased at wider DF. The yield was reduced with wider distance of DF more extensively, the highest yield of 270 g per $m^2$ at the every row, but yield showed decreasing tendency at over the $4^{th}$ row (2.8 m) cultivation. Soybean cultivation in paddy field could be founded with DF of every other or $4^{th}$ row.

Biocementation via soybean-urease induced carbonate precipitation using carbide slag powder derived soluble calcium

  • Qi, Yongshuai;Gao, Yufeng;Meng, Hao;He, Jia;Liu, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • Soybean-urease induced carbonate precipitation (EICP), as an alternative to microbially induced carbonate precipitation (MICP), was employed for soil improvement. Meanwhile, soluble calcium produced from industrial waste carbide slag powder (CSP) via the acid dissolution method was used for the EICP process. The ratio of CSP to the acetic acid solution was optimized to obtain a desirable calcium concentration with an appropriate pH. The calcium solution was then used for the sand columns test, and the engineering properties of the EICP-treated sand, including unconfined compressive strength, permeability, and calcium carbonate content, were evaluated. Results showed that the properties of the biocemented sand using the CSP derived calcium solution were comparable to those using the reagent grade CaCl2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that spherical vaterite crystals were mainly formed when the CSP-derived calcium solution was used. In contrast, spherical calcite crystals were primarily formed as the reagent grade CaCl2 was used. This study highlighted that it was effective and sustainable to use soluble calcium produced from CSP for the EICP process.

Evaluating efficiency of automatic surface irrigation for soybean production

  • Jung, Ki-yuol;Lee, Sang-hun;Chun, Hyen-chung;Choi, Young-dae;Kang, Hang-won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.252-252
    • /
    • 2017
  • Nowadays water shortage is becoming one of the biggest problems in the Korea. Many different methods are developed for conservation of water. Soil water management has become the most indispensable factor for augmenting the crop productivity especially on soybean (Glycine max L.) because of their high susceptibility to both water stress and water logging at various growth stages. The farmers have been using irrigation techniques through manual control which farmers irrigate lands at regular intervals. Automatic irrigation systems are convenient, especially for those who need to travel. If automatic irrigation systems are installed and programmed properly, they can even save you money and help in water conservation. Automatic irrigation systems can be programmed to provide automatic irrigation to the plants which helps in saving money and water and to discharge more precise amounts of water in a targeted area, which promotes water conservation. The objective of this study was to determine the possible effect of automatic irrigation systems based on soil moisture on soybean growth. This experiment was conducted on an upland field with sandy loam soils in Department of Southern Area Crop, NICS, RDA. The study had three different irrigation methods; sprinkle irrigation (SI), surface drip irrigation (SDI) and fountain irrigation (FI). SI was installed at spacing of $7{\times}7m$ and $1.8m^3/hr$ as square for per irrigation plot, a lateral pipe of SDI was laid down to 1.2 m row spacing with $2.3L\;h^{-1}$ discharge rate, the distance between laterals was 20 cm spacing between drippers and FI was laid down in 3m interval as square for per irrigation plot. Soybean (Daewon) cultivar was sown in the June $20^{th}$, 2016, planted in 2 rows of apart in 1.2 m wide rows and distance between hills was 20 cm. All agronomic practices were done as the recommended cultivation. This automatic irrigation system had valves to turn irrigation on/off easily by automated controller, solenoids and moisture sensor which were set the reference level as available soil moisture levels of 30% at 10cm depth. The efficiency of applied irrigation was obtained by dividing the total water stored in the effective root zone to the applied irrigation water. Results showed that seasonal applied irrigation water amounts were $60.4ton\;10a^{-1}$ (SI), $47.3ton\;10a^{-1}$ (SDI) and $92.6 ton\;10a^{-1}$ (FI), respectively. The most significant advantage of SDI system was that water was supplied near the root zone of plants drip by drip. This system saved a large quantity of water by 27.5% and 95.6% compared to SI, FI system. The average soybean yield was significantly affected by different irrigation methods. The soybean yield by different irrigation methods were $309.7kg\;10a^{-1}$ from SDI $282.2kg\;10a^{-1}$ from SI, $289.4kg\;10a^{-1}$ from FI, and $206.3kg\;10a^{-1}$ from control, respectively. SDI resulted in increase of soybean yield by 50.1%, 7.0% 9.8% compared to non-irrigation (control), FI and SI, respectively. Therefore, the automatic irrigation system supplied water only when the soil moisture in the soil went below the reference. Due to the direct transfer of water to the roots water conservation took place and also helped to maintain the moisture to soil ratio at the root zone constant. Thus the system is efficient and compatible to changing environment. The automatic irrigation system provides with several benefits and can operate with less manpower. In conclusion, improving automatic irrigation system can contribute greatly to reducing production costs of crops and making the industry more competitive and sustainable.

  • PDF

Effects of Soil Conditioner Treatments on the Changes of Soil Physical Properties and Soybean Yields (토양개량제(土壤改良劑) 처리(處理)가 토양(土壤)의 물리성(物理性)과 대두(大豆) 수량(收量)에 미치는 영향(影響))

  • Jo, In Sang;Hur, Bong Koo;Ryu, Kwan Shig;Um, Ki Tae;Cho, Seong Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.29-34
    • /
    • 1987
  • This experiment was designed to find out the effects of soil conditioner, Polyacrylamide (PAM) and Bitumen, on the changes of soil aggregate properties and crop yields. The soil conditioners were treated at the rates of 0.5% and 1% to sandy loam and silty clay loam soils. The aggregate stability, wetting angle, mean weight diameter and air permeability were analyzed. Pot experiments were carried out to investigate the soybean growths and soil property changes after the soil conditioners were sprayed to surface soils. Soil aggregate stability was increased remarkably by the soil conditioner, PAM and Bitumen, treatments. PAM was more effective in sandy loam than silty clay loam, but Bitumen was better in silty clay loam. Wetting angle of the soil was changed slightly by PAM treatment, but it was greatly changed to hydrophobic by Bitumen treatment. Air permeability, water infiltration rate and moisture retention of the soils were increased by surface application of soil conditioners, PAM and Bitumen. The growths of soybean in conditioner applicated pots were better than those of untreated pots from early stage, and the yields were increased 6-13%.

  • PDF