• Title/Summary/Keyword: soybean germplasm

Search Result 48, Processing Time 0.022 seconds

SSR Profiling and Its Variation in Soybean Germplasm (콩 유전자원의 SSR Profiling과 변이)

  • Yoon, Mun-Sup;Lee, Jeong-Ran;Baek, Hyung-Jin;Cho, Gyu-Taek;Kim, Chang-Yung;Cho, Yang-Hee;Kim, Tae-San;Cho, Eun-Gi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • The evaluation of soybean germplasm has mainly been carried out by morphological characters at Genetic Resources Division, Rural Development Administration (RDA). However, this information has been limited serving a diverse information for user and effectively managing the soybean germplasm. To resolve this problem, soybean collection conserved at RDA gene bank was profiled using nine soybean SSR (Simple Sequence Repeat) markers. Soybean SSR allele was confirmed using genescan and genotyper softwares of automatic sequencer for accurate genotyping of each accession and continuous accumulation of data. SSR profiling of soybean germplasm has been carried out from 2,855 (Satt458) to 4,368 (Satt197) accessions by locus. The number of allele revealed 267 with an average of 29.6 in total accession, and varied from a low of 21 (Satt532 and Satt141) to a high of 58 (Sat_074). Although the number of accessions of wild soybean is less than that of soybean landraces, Korean wild soybean is more variable than other soybean landraces populations in total number of alleles. However, Korean soybean landraces were more variable than Korean wild soybeans in 5 loci. In the allele frequency, wild soybean accessions showed an even distribution in all alleles and higher distribution in low ladder than in high ladder. Also, Korean soybean landraces revealed a high condensed frequency in Satt286 (202 bp, 232 bp), Chinese soybean landraces in Satt197 (171 bp) and Satt458 (173 bp), and Japanese soybean landraces in Sat_074 (244 bp) and Satt458 (170 bp). These SSR profile information will be provided as indications of redundancies or omissions of accessions and can aid in managing soybean collection held at RDA gene bank. The information on diversity analysis could help to enlarge the genetic diversity of materials in breeding program, and could be used to develop a core collection of soybean germplasm.

Germplasm Detection for titi Genotype Using SSR Marker in Soybean

  • Kim, Myung-Sik;Jeong, Woo-Hyeun;Nam, Ki-Chul;Park, Mo-Se;Lee, Kyoung-Ja;Chung, Jong-Il
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.159-162
    • /
    • 2007
  • Soybean Kunitz trypsin inhibitor(SKTI) protein is a small, monomeric and non-glycosylated protein containing 181 amino acid residues and is responsible for the inferior nutritional quality of unheated or incompletely heated soybean meal. The objective of this research is to confirm SSR marker(Satt228) tightly linked to the Ti locus using several germplasm accessions with TiTi or titi genotypes for MAS in soybean breeding programs. TiTi genotypes('Jinpumkong2', 'Clark', and 'William') had allele1 and titi genotypes(PI196168, C242, W60, and PI157440) had allele2 in Satt228 marker analysis. 'Jinpumkong2', 'Clark', and 'William'(TiTi genotype) had a Kunitz trypsin inhibitor protein of 21.5 kDa size, and PI196168, C242, W60, and PI157440(titi genotype) did not have the band in protein gel electrophoresis from the mature seed. Cosegregation between the SKTI protein(21.5 kDa size) and allele of Satt228 marker was observed in seven germplasm accessions with different genetic backgrounds. Any recombination between the SKTI protein and allele of the Satt228 marker was not observed. This result indicates that Satt228 marker may effectively utilized to select the plants with the titi genotype.

  • PDF

Relationship between Fruiting Period and Agronomic Characters in Korean Local Soybean Collections (재래종대두의 결실일수군별과 제형질과의 관계)

  • ;Shin-Han Kwon;Hi-Sup Song
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.380-385
    • /
    • 1988
  • The present study was conducted to evaluate agronomic characters of the soybean germplasm which was collected from the sites covering whole areas of southern Korean peninsula. A total of 2,748 Korean native soybeans was grouped for fruiting period and in this group frequency distribution of the important agronomic characters and relationships among the characters were determined. The results obtained were summarized as follows; The soybean germplasm was comprised of SeoulㆍKyonggi-do 7.5%, Kangwon-do 13.3%, Chungchongbuk-6.6%. Chungchongnam-do 12.3%, Chollabuk-do 10.7%, Chollanam-do 12.6%, Kyongsangbuk-do 20.8%, Kyongsangnam-do 15.3% and Cheju-do 0.6% in number of collections. Frequency distribution of the germplasm for fruiting period was 0.14% in Group I (below 55 days). 1.67% in Group II (56-60 days), 10.58% in (Group III(61-65 days), 23.18% in Group IV(66-70 days), 25.91% in Group V(71-75 days) 19.79% in Group Ⅵ(76-80 days), 15.1% in Group Ⅶ(81-85 days) and 3.6% in Group Ⅷ(over 85 days). The lines over 70 days in fruiting period were as much as 64.4% of germplasm. The fruiting period varied largely from 45 days to 91 days. Fruiting period was positively correlated to seed weight, days to maturity, days to flowering, plant height and number of branches per plant, respectively. While. it was negatively correlated to number of pods, lodging and virus infectivity, repectively, and in particular negative correlation was shown significantly between yield and fruiting period. Average yield was very high as much a 1.389kg/ha in fruiting period Group I, and decreased with increment of fruiting period, 1.400kg/ha in Group II. 1.384kg/ha in Group III. 1,299kg/ha in Group IV, 1,197kg/ha in Group V, 1,117kg/ha in Group Ⅵ, 967kg/ha in Group Ⅶ and 832kg/ha in Group Ⅷ.

  • PDF

Seed Characteristics of Black Soybean Collections in Korea (수집재래 검정콩의 종실특성)

  • Kim, Seok-Dong;Kim, Yong-Ho;Hong, Eun-Hi;Park, Eui-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.5
    • /
    • pp.437-441
    • /
    • 1993
  • The improvement of superior black soybeans could be accomplished through maintenance and use of black soybean collections. A collection of 965 black soybean lines currently grown by farmers was made in 197 locations on spring, 1991. This study was carried out to evaluate them as useful germplasm. Seed characteristics of black soybean collections were evaluated for black soybean breeding for seed quality. The 100-seeds weight of 929 black soybean genotypes were distributed from 6.9 to 48.1 gram. The maximum and minimum 100-seeds weight were derived from Chungnam and Jeonbuk province, respectively. l00-seeds weight was heavier in middle and late maturity group, as maturity was later, whereas no tendency was shown in early maturity group. Length, width and thickness of the collected black soybean seeds were 9.5$\pm$1.5mm, 7.3$\pm1.3mm and 7.3$\pm1.2mm, respectively. Black soybean collections with yellow seed embryo was 72% and the others were green seed embryo.

  • PDF

Perspectives of Breeding for High Protein Quantity and High Protein Quality of Soybeans (콩 양질ㆍ고단백 품종 육성방향)

  • Chung, Kil-Woong;Hong, Eun-Hi;Kim, Seok-Dong;Hwang, Young-Hyun;Lee, Yeong-Ho;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.s01
    • /
    • pp.39-47
    • /
    • 1988
  • Soybean grain is most widely used and soybean crop produces most high protein per area among crops. To meet rapid increase of human population and supply protein in safety. soybean has considered more and more important crop. And it has been emphasizing that high quality and high protein soybean breeding must be made efforts in future. Many papers related to soybean breeding for high quality and protein and soybean protein composition have suggested the problems to do in future. Soybean germplasm collection. classification and conservation should be continuously performed, and it is emphasized that wild type of soybeans (G. soja) be considered to use in breeding for high protein varieties. Selections would be better emphasized in first yield and therefore high yield of protein per area. Selection for high protein would be secondary criterion. High protein lines with high yielding potential could be selection from certain populations, and breeders should consider this phenomenon in procedure of selection. Heritability of protein percent is relatively high and genetic gain of increment of protein percent is large. Soybean protein which is comprised 70 to 90% of globulin is constituted mostly 11S and 7S proteins. Sulfur-containing amino acids, methionine and cysteine, are identified to contain more in 11S protein than 7S protein. High 11S germplasm should be desirable to use in crossing plan, and selection of high ratio of 11S/7S lines be better in development of high quality varieties.

  • PDF

Comparison of Isoflavone Content and Composition in Soybean (Glycine max L. (Merr)) Germplasm

  • Hyemyeong Yoon;Yumi Choi;Myung-Chul Lee;Jeongyoon Yi;Sejong Oh;Sukyeung Lee;Hyunchoong Ok;Kebede Taye Desta
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.101-101
    • /
    • 2020
  • Soybean is known as to have a several healthy ingredients. Among them, isoflavones are effective in reducing obesity, menopausal symptom. Isoflavones consist of 12 isomers, including Aglycon, Glucoside, Malonyl glucoside, Acetyl glucoside, and are usually found in soybean seeds. The content is determined by the sum of 12 isomers, and the content value difference between the varieties is huge. In this study, we investigated the agronomic traits, 12 isomer of isoflavone content and composition for 49 soybean germplasms. This germplasms were selected from the 23,000 germplasms with the highest total content of isoflavones possessed by the National Agrobiodiversity Center. Seed samples were cultivated in experimental field located in Jeonju City on April 04, 2019. Matured seeds were harvested and portions of each seed samples were oven-dried, pulverized, and analyzed for their isoflavone compositions using HPLC-DAD. The soybean samples showed distinction in their agronomic traits, isoflavone compositions and contents. The days to flowering ranged between 38 and 69 days while the days to maturity ranged between 103 and 156 days. The seed coat color of soybean germplasms was 24 in black, 10 in yellow, 2 in green, 5 in yellowish green, 4 in green with black spot, 4 in pale yellow. The germplasm with the highest total content of isoflavones was the IT178054(1257.61±7.98 ㎍/g), but the germplasms containing the largest number of isoflavone isomers were IT274592, IT275005, both germplasms had 11 isoflavone isomers excluding Malonyl glycitin. The largest source of Aglycon, the most easily absorbed isoflavone form in the human body, was IT274592(DZ: 8.83±0.30 ㎍/g, GL: 11.14±0.81 ㎍/g, GE: 8.16±0.26 ㎍/g), while only IT274592, IT275005, IT308619 contained all three components of Aglycon. In Principal Component Analysis(PCA), the first two principal components showed more than 3.5 Eigen value and accounted for 58.2% of variability. The total content value had strong relationship with Malonyl genistin content value. Acetyl isomers had strong relationship, but Malonyl isomers were only related to isomers except Malonyl glycitin. These results will help in research on soybean varieties to enhance isoflavone ingredients.

  • PDF

Studies on the Soybean Cyst Nematode (Heterodera glycines) in China

  • Liu, Wei-Zhi;Liu, Ye;Duan, Yu-Xi;Hong, Quan-Chun;Wang, Ke-Ning
    • Korean journal of applied entomology
    • /
    • v.34 no.2
    • /
    • pp.83-88
    • /
    • 1995
  • Soybean has been cultivated in China for 5,000 years. The soybean cyst neamtode (SCN), Heterodra glycines, was recongnized in Northeastern China in 1899. Currently, it is known to occur in 12 provinces. The biology of SCN was investigated in several provinces. Six races of SCN were identified (race 1, 2, 3, 4, 5 and 7). About f10,000 soybean germplasm lines were evaluated for their resistance to race 1, 3, 4 and 5 of SCN. At least two black-seeded cultivars are resistant to all four races. Several tolerant soybean cultivars with yellow seed coat were released and are in production. Additional resistant cultivars are being developed. Nematicides were not applied in production Potential biocontrol agents and related aspects are being investigated.

  • PDF

Soybean Improvement for Drought, Salt and Flooding Tolerance

  • Pathan, Safiullah;Nguyen, Henry T.;Sharp, Robert E.;Shannon, J. Grover
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.329-338
    • /
    • 2010
  • Drought, salinity and flooding are three important abiotic factors limiting soybean production worldwide. Irrigation, soil reclamation, and drainage systems are not generally available or economically feasible for soybean production. Therefore, productive soybean varieties with tolerance are a cost effective means for reducing yield losses due to these factors. Genetic variability for higher tolerance to drought, salt and flooding is important. However, only a small portion of nearly 200,000 world soybean accessions have been screened to find genotypes with tolerance for use in breeding programs. Evaluation for tolerance to drought, salinity and flooding is difficult due to lack of faster, cost effective, repeatable screening methods. Soybean strains with higher tolerance to the above stresses have been identified. Crosses with lines with drought, salt and flooding tolerance through conventional breeding has made a significant contribution to improving tolerance to abiotic stress in soybean. Molecular markers associated with tolerance to drought, salt and flooding will allow faster, reliable screening for these traits. Germplasm resources, genome sequence information and various genomic tools are available for soybean. Integration of genomic tools coupled with well-designed breeding strategies and effective uses of these resources will help to develop soybean varieties with higher tolerance to drought, salt and flooding.