• Title/Summary/Keyword: soybean cultivation

Search Result 361, Processing Time 0.026 seconds

Nitrogen Balance and Biological Nitrogen Fixation of Soybean in Soybean-Barley Cropping System

  • Park Sei Joon;Kim Wook Han;Lee Jae Eun;Kwon Young Up;Shin Jin Chul;Ryu Yong Hwan;Seong Rak Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.1-4
    • /
    • 2005
  • This experiment was conducted to investigate the soil nitrogen credit of biological nitrogen fixation (BNF) and the nitrogen balance of soybean in soybean-barley cropping systems. Soybean cultivar, Shinpaldalkong2 and barley cultivar, Olbori, were used in soybean mono-cropping (SM), barley monocropping (BM), and barley­soybean double cropping system. The barley-soybean double cropping system was treated with two different levels of nitrogen fertilizers, 0 nitrogen fertilizer (BS-F0), and standard nitrogen fertilizer (BS-F1). Nitrogen and organic matter concentrations in soil of BS-F1 plot on October, 2001 were increased $4.8\%\;and\;5.9\%$, respectively, compared with those on October, 2000. The ranges of BNF rate in soybean were $69.1\~ 88.2\%$ in two years, and the rate was the highest in BS-F0 plot and the lowest in SM plot. The ranges of nitrogen harvest index (NHI) in all treatments were $83.9\~86.7\%$. The yield was 270 kg/10a in BS­F1 plot and 215 kg/10a in BS-F0 plot. However, the nitrogen balances were +0.6 kg/10a of gain of soil nitrogen in BS-F0 plot and -0.4 kg/10a of loss of soil nitrogen in BS-F1 plot. In comparisons of SM and BS-F1 plots, although the seed yields were similar in two plots, the loss of soil nitrogen was higher in SM than BS-F1 plot. Overall, our results suggest that barley-soybean double cropping system was more effective in respect to seed productivity and soil nitrogen conservation than soybean monocropping system, and the N credit to following crops by soybean cultivation was identified in soybean double cropping system.

Isolation of a Fermenting Microorganism Involved in Formation of ortho-Dihydroxyisoflavones in Doenjang (Korean Fermented Soybean Paste)

  • Seo, Hyo-Seel;Lee, Jae-Hwan;Kwon, Dae-Yong;Park, Jin-Byung
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.1030-1034
    • /
    • 2009
  • A fermenting microorganism involved in formation of ortho-dihydroxyisoflavones (ODIs) during aging of doenjang (Korean fermented soybean paste) has been investigated. Microorganisms in ODI-containing doenjang were isolated by cultivating on yeast mold (YM) agar medium containing 0-7% NaCl. ODI formation of the isolated strains was examined by gas chromatography/mass spectrometry (GC/MS) analysis after cultivation in modified YM broth or soybean extract medium. An ODI-producing microbe was identified as Bacillus subtilis HS-1 based on 16S rRNA gene sequence analysis. The strain has produced 8-hydroxydaidzein as a major product during growth in the modified YM broth or soybean extract medium. Therefore, it was concluded that one of the microorganisms involved in the formation of ODIs in doenjang was B. subtilis HS-1.

Production of Photosynthetic Bacterial Cells of Rhodospirillum rubrum P17 from Soybean Curd Waste Water (두부공업폐수를 이용한 광합성세균 Rhodospirillum rubrum P17의 균체생산)

  • 강성옥;조경덕;임완진;조흥연;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.622-627
    • /
    • 1993
  • Rhodospirillum rubrum P17 was used to investigate the pontential for the treatment of soybean curd waste and for the utilization of the biomass produced. The maximal biomass production and COD removal from the waste water were obtained at 30C, pH 7.0 under 2,500lux production and 50 rpm of agitation. The initial COD level of the soybean curd waste water was 3,240mg/l, and after 4 days of cultivation in batch culture, 3.46g/l of cells was obtained and COD level of the waste water reduced to 150mg/l (COD removal rate 95.4%).

  • PDF

Statistical Optimization of the Medium Components for the Production of Protopectinases by Bacillus subtilis

  • Shahbazian, Nafise;Ashtiani, Farzin Zokaee;Bonakdarpour, Babak
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.442-448
    • /
    • 2009
  • In this study Bacillus subtilis PTCC 1023 was used for the production of protopectinase using soybean based media. The use of isolated soybean protein (ISP) and soybean flour resulted in similar protopectinase production and growth rates. The effect of medium composition on protopectinase production was studied using central composite design (CCD) methodology. The change in the concentration of ISP (1-7%), glucose (0-10%), and phosphate (0.1-0.3 M) was found to affect the protopectinase activity (response variable) after 24 hr of cultivation. In the range studied, ISP and glucose had a negative effect on the response variable, whereas phosphate had a positive effect. A statistically significant interaction was identified between phosphate and ISP, suggesting that correct optimization of medium formulation in this case can only be obtained using factorial design of experiments. Protopectinase activity exceeding 215 U/mL was obtained in a medium containing 4% ISP, 0.3M phosphate, and no added sugar.

Mineralization of Nitrogen in Soils under Paddy-Upland Switching Cultivation Systems (답전윤환토양(沓田輪換土壤)에서 질소무기화(窒素無機化)의 특성(特性)에 관(關)한 연구)

  • Ahn, Sang-Bae;Motomatsu, T.;Yeon, Beong-Yeal;Yuk, Chang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 1992
  • The rate and pattern of soil nitrogen mineralization were investigated under conditions of a paddy-upland switching cultivation system. Experimental results obtained are as follows 1. Amounts of soil nitrogen mineralized were different in the order of potato-cabbage>soybean>continuous paddy plot for the first year, but potato-cabbage>continuous paddy>soybean plot for the second year, respectively. 2. In the third year cropping under upland condition a higher amount of soil nitrogen was found mineralized at the plot of continuous upland cultivation than at the alternate paddy-upland switching plot in the case of potato-cabbage, on the contrary, however, the higher amount was found at the alternate paddy-upland switching plot in the case of soybean cultivation. 3. The amounts of total soil nitrogen and carbon were lower in paddy-upland switching plots than in continuous paddy plots. This trend is significant in soybean plots. 4. A positive correlationship was found between phosphate buffer solution method for available nitrogen and submerged soil method for $NH_4-N$, both being utilized for the estimation of soil fertility.

  • PDF

Composition analysis of raw material constituting the medium for mushroom cultivation (버섯재배용 배지재료의 성분분석)

  • Kim, Sun Young;Jeong, Min Hwa;Kim, Min-Keun;Im, Chak Han;Kim, Kyung-Hee;Kim, Tae Sung;Kim, Dong Sung;Cheong, Jong-Chun;Hong, Ki Sung;Ryu, Jae-San
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.208-213
    • /
    • 2013
  • The contents of raw materials which are components of mixed substrate for mushroom cultivation were analyzed to optimize the composition. The pure protein(amino acid) level of soybean meal was the highest, 44.02% followed by those of soybean curd residue(31.5%) and cotton seeds meal(30.6%). The non protein nitrogen(NPN) contents in crude protein of main nitrogen materials were 2.4% for soybean meal and 5.6% for dried soybean curd residue, while those of wheat bran and rice bran used as the carbon source were relatively higher, 17.6% compared to that of nitrogen supplying media. Crude protein content per price was 6.0 for rapeseed meal, indicating that it is high crude protein content per price. Nitrogen-free extract(NFE) considering as an ingredient for mycelial growth were high in alphacorn(72.9%) and wheat bran B(57.2%). Acid detergent fiber(ADF) was high in corncob, 51.88%, its use for cultivation of brown rot fungi including Lentinus lepideus should pay attention because the fungi lack complete lignin degradation activity.

De novo genome assembly and single nucleotide variations for Soybean yellow common mosaic virus using soybean flower bud transcriptome data

  • Jo, Yeonhwa;Choi, Hoseong;Kim, Sang-Min;Lee, Bong Choon;Cho, Won Kyong
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.189-195
    • /
    • 2020
  • The soybean (Glycine max L.), also known as the soya bean, is an economically important legume species. Pathogens are always major threats for soybean cultivation. Several pathogens negatively affect soybean production. The soybean is also known as a susceptible host to many viruses. Recently, we carried out systematic analyses to identify viruses infecting soybeans using soybean transcriptome data. Our screening results showed that only few soybean transcriptomes contained virus-associated sequences. In this study, we further carried out bioinformatics analyses using a soybean flower bud transcriptome for virus identification, genome assembly, and single nucleotide variations (SNVs). We assembled the genome of Soybean yellow common mosaic virus (SYCMV) isolate China and revealed two SNVs. Phylogenetic analyses using three viral proteins suggested that SYCMV isolate China is closely related to SYCMV isolates from South Korea. Furthermore, we found that replication and mutation of SYCMV is relatively low, which might be associated with flower bud tissue. The most interesting finding was that SYCMV was not detected in the cytoplasmic male sterility (CMS) line derived from the non-CMS line that was severely infected by SYCMV. In summary, in silico analyses identified SYCMV from the soybean flower bud transcriptome, and a nearly complete genome of SYCMV was successfully assembled. Our results suggest that the low level of virus replication and mutation for SYCMV might be associated with plant tissues. Moreover, we provide the first evidence that male sterility might be used to eliminate viruses in crop plants.

Estimation of Soybean N Fraction Derived from N Sources by $^{15}N$ in Soybean Cultivation with Rye as Green Manure (호밀녹비 이용 시 중질소($^{15}N$)를 이용한 질소원 유래별 콩의 집적질소 분획추정)

  • Seo, Jong-Ho;Lee, Seong-Hee;Cho, Young-Son;Lee, Jae-Eun;Lee, Chung-Keun;Kwon, Young-Up
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.50-57
    • /
    • 2008
  • Winter season cultivation of rye as green manure for soybean have been a favorite with farmer because it could remove a risk of injury by continuous cropping and increase N uptake and yield of soybean. Effects of rye green manure on soybean N uptake, $N_2$ fixation and yield were investigated with $^{15}N$ as pot experiment in greenhouse in 2004 and field in 2005, respectively. The N derived from N fertilizer ($^{15}N$) in rye green manure increased with increasing of N fertilizer rate compared to N derived from soil. N uptake and DM yield of soybean at the pot with paddy soil was higher than those at the pot with upland soil mainly due to the increase of N uptake from paddy soil. Total $^{15}N$ recovery in soil was higher at rye green manure than no green manure because $^{15}N$ applied to rye plant was remained highly as soil organic N compared to chemical N fertilizer. $^{15}N$ recovery in soybean plant increased in proportion to amounts of N fertilizer applied to rye. The N fractions from $N_2$ fixation of soybean plant at the pot experiment in 2004 ranged from 92% to 95%, on the other hand those in field experiment in 2005 ranged from 82% to 84%. Estimation of amount of $N_2$ fixation was not different between Difference method and $^{15}N$ method in 2004 and 2005.

Antioxidant Activities of Various Black Soybean Tissues (Glycine max L.) Harvested from Different Cultivation Regions (재배지역에 따른 검정콩 부위별 추출물의 항산화 활성)

  • Kim, Hyun Young;Wo, So-Yeun;Yang, Ji Yeong;Song, Seung-Yeob;Seo, Woo Duck;Lee, Mi Ja;Choi, Man-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.4
    • /
    • pp.331-339
    • /
    • 2021
  • With the aim of developing region specialized crops, this study was conducted to clarify effects of variant and cultivation region on antioxidative activities in various black soybean (Glycine max L.) seed tissues. Three black soybean varieties (SCEL-1, Wonheug, and Cheongja 3) were each cultivated in 4 different regions (Jeonju, Pyeongchang, Paju, and Cheonan). Harvested seeds were used to assess DPPH and ABTS radical scavenging activity, and total polyphenol, flavonoid and anthocyanin content. SCEL-1 soybean hull contained higher DPPH and ABTS radical scavenging activity (61% and 85% respectively) compared to Wonheug (40% and 50% respectively). SCEL-1 cultivated in Pyeongchang displayed the highest total polyphenol and flavonoid content (1,189 mg GAE/100g sample and 951 mg CTE/ 100g sample, respectively). Total anthocyanin content was ranked in the following order: SCEL-1>Wonheug>Cheongja 3. All black soybeans showed much higher antioxidant activity in the soybean hull than in the dehulled soybean. The antioxidant activity of black soybeans cultivated at high latitudes was high. These results suggest that the best black soybean variant for high beneficial biological activities is the SCEL-1 variant. For a complete understanding of the potential of black soybean as functional foods, we plan to further analyze their antioxidant activities in future studies.

Predicting Regional Soybean Yield using Crop Growth Simulation Model (작물 생육 모델을 이용한 지역단위 콩 수량 예측)

  • Ban, Ho-Young;Choi, Doug-Hwan;Ahn, Joong-Bae;Lee, Byun-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.699-708
    • /
    • 2017
  • The present study was to develop an approach for predicting soybean yield using a crop growth simulation model at the regional level where the detailed and site-specific information on cultivation management practices is not easily accessible for model input. CROPGRO-Soybean model included in Decision Support System for Agrotechnology Transfer (DSSAT) was employed for this study, and Illinois which is a major soybean production region of USA was selected as a study region. As a first step to predict soybean yield of Illinois using CROPGRO-Soybean model, genetic coefficients representative for each soybean maturity group (MG I~VI) were estimated through sowing date experiments using domestic and foreign cultivars with diverse maturity in Seoul National University Farm ($37.27^{\circ}N$, $126.99^{\circ}E$) for two years. The model using the representative genetic coefficients simulated the developmental stages of cultivars within each maturity group fairly well. Soybean yields for the grids of $10km{\times}10km$ in Illinois state were simulated from 2,000 to 2,011 with weather data under 18 simulation conditions including the combinations of three maturity groups, three seeding dates and two irrigation regimes. Planting dates and maturity groups were assigned differently to the three sub-regions divided longitudinally. The yearly state yields that were estimated by averaging all the grid yields simulated under non-irrigated and fully-Irrigated conditions showed a big difference from the statistical yields and did not explain the annual trend of yield increase due to the improved cultivation technologies. Using the grain yield data of 9 agricultural districts in Illinois observed and estimated from the simulated grid yield under 18 simulation conditions, a multiple regression model was constructed to estimate soybean yield at agricultural district level. In this model a year variable was also added to reflect the yearly yield trend. This model explained the yearly and district yield variation fairly well with a determination coefficients of $R^2=0.61$ (n = 108). Yearly state yields which were calculated by weighting the model-estimated yearly average agricultural district yield by the cultivation area of each agricultural district showed very close correspondence ($R^2=0.80$) to the yearly statistical state yields. Furthermore, the model predicted state yield fairly well in 2012 in which data were not used for the model construction and severe yield reduction was recorded due to drought.