• Title/Summary/Keyword: soybean cultivation

Search Result 360, Processing Time 0.027 seconds

Change of asparagine content in soybean sprouts by variety, root growth, and cultivation period (콩나물의 품종, 뿌리발생 및 재배일수에 따른 asparagine 함량 변이)

  • Jeong, Yeon-Shin;Park, Hee Joon;Dhakal, Krishna Hari;Lee, Jeong-Dong;Lee, In-Jung;Hwang, Young-Hyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.26
    • /
    • pp.63-69
    • /
    • 2008
  • The varietal difference, effect of root amounts and cultivation duration on the asparagine content of soybean sprouts, which is known to have the excellent detoxifying effect of ethanol, were investigated for developed varieties and indigenous sprout lines to establish cultivation methods of increasing the asparagine content and to develop soybean varieties having high asparagine content. Some of the research results obtained are summarized as follows; 1. Range and mean of asparagine content of 174 germplasm were 0.38~1.67% and 0.99%, respectively, on fresh weight basis. 2. Developed sprout-soybean varieties showed somewhat higher asparagine content of 1.29% than that of indigenous sprout lines of 0.96% on fresh weight basis. 3. No significant difference in asparagine content among the seed size groups was recognized though the highest asparagine content, 1.02% on fresh weight basis was observed in the seed size of 8.1~10.0g/100 seeds. 4. Among the seed coat color groups, soybean of brown seed coat color showed the highest asparagine content (1.15%) on fresh weight basis. No difference was observed among other groups of seed coat color. 5. Range of asparagine content of 174 varieties was 4.08~6.24% on dry weight basis. Soybean varieties that showed high asparagine content were Dawonkong, Sobacknamulkong, Sowonkong, and Somyungkong, with the contents of 6.24%, 6.21%, 5.95%, and 5.85%, respectively. 6. Amount of roots which have the highest asparagine content out of sprout parts was greatly increased up to 10 days of sprout cultivation. 7. Highly significant difference in asparagne content of sprout was recognized between those grown for five and ten days, with the asparagine content of 0.68% and 1.21%, respectively, on fresh weight basis. 8. Asparagine content of hypocotyle part was also highly proportional to days to cultivation; it increased from 2.91% at 2 days of cultivation to 15.68% on fresh weight basis at 14 days of cultivation.

  • PDF

Effect of Planting Date and Cultivation Method on Soybean Growth in Paddy Field (파종기와 재배방법에 따른 논 재배 콩의 품종별 생장분석)

  • Cho Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.2
    • /
    • pp.191-204
    • /
    • 2006
  • This study was conducted to identify the effect of planting date and cultivation method on soybean growth and yield in paddy field. The plant height of soybeans in single cropping(SC) was higher than those in cultivating after barley culture (CB). Considering planting date and cultivation method, plant height tend to be higher in SC with level row cultivation(LR) and in CB with high ridge cultivation(HR). In this SC method, nodule formation in LR was better than in HR, but number of nodules of cv. Hwangkeumkong was highest, regardless of planting date and cultivation method. In the progress of growth stage, leaf areas of all cultivars were distinctively increased in CB than in SC. However, dry weight of top plants and roots in SC was comparably higher than that in CB due to growing periods of the soybeans. In cultivation methods, general type of dry weight of top plants was higher in LR than in HR, however, root dry weight was via verses. Growth responses varied depending on cultivars, cultivation methods, and planting date and these factors affected to shoot root (T/R) ratio. The T/R ratios in LR and SC were higher than those in HR and CB. In R8 stage, number of pods and ripened seed varied depending on cultivars. cv. Hwaeomputkong, which showed early maturing trait, was lowest. However, both yield factors tended to be higher in HR and CB than in LR and SC. The ratios of ripened seeds percentage of cv. Hwangkeumkong and cv. Eunhakong were higher in CB than in SC. However, yields of cv. Daewonkon and cv. Taekwangkong were higher in CB than in SC.

  • PDF

Anti-inflammatory and anti-allergic effect of soybean extracts produced by organic cultivation (유기농 대두 추출물의 항염증 및 항알레르기 효과)

  • Chung, Eun-Kyung;Seo, Eun-Hye;Park, Jun-Ho;Kim, Young-Nam;Kim, Kyung-Hee;Lee, Byung-Ryong
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.103-113
    • /
    • 2009
  • This present study was carried out to investigate the biological effects of soybean extracts comparing organic and conventional cultivation. Cellular and molecular analysis was performed to determine anti-oxidative, anti-inflammatory, anti-apoptotic, and anti-inflammatory effects of both soybean extracts. First, we obtained various solvent extracts of soybeans such as water, ethanol, and methanol. Molecular and cellular analysis were performed with 0.1 mg/ml concentration of each solvent extracts. The results of anti-oxidative, anti-inflammatory and anti-apoptotic effects of organic cultivated soybean extracts were prominent than conventional cultivated soybean extracts. However, discrepancy between organic and conventional cultivated soybean extracts was not observed in anti-allergic effects determined by releasing histamine from rat mast cell line, RBL-2H3. Conclusively, organic cultivated soybeans have stronger effects than conventional cultivated soybeans in suppression of inflammation. In addition, organic soybeans could be applied as a functional food ingredient for treatment of chronic inflammation, asthma, and atopic dermatitis with enhanced anti-inflammatory activities.

  • PDF

Effects of Barley Straw Application and Tillage Method on Soil Physical Property and Soybean Yield in Paddy Field (논에서 콩 재배시 보릿짚 시용과 경운방법에 따른 토양 물리성과 수량)

  • Lee, Sang-Bok;Kim, Byong-Soo;Kang, Jong-Gook;Kim, Sun;Kim, Jai-Duk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.593-598
    • /
    • 2006
  • This study was conducted to investigate the effect of tillage methods such as plowing and rotary tillage (PRT), rotary tillage (RTG), no-tillage after barley straw application (NTB), and barley straw mulching after plowing and rotary tillage (BPR) on the growth and the yield of soybean when cultivated after the cultivation of barley. The methods were compared with the control method in which plowing and rotary tillage after barley straw incineration was applied. Barley straw application resulted in increase in organic matter, total nitrogen, phosphate, and exchangeable cation regardless of tillage methods. Porosity and moisture level in paddy soil was ranked as follows : PRT > RTG > BPR > control > NTB. Decomposition rate of barley straw dramatically increased to 41.7% toward 30 days after soybean sowing, higher in NTB, DRB, and RTG than in BPR. Weed occurrence was decreased 36% in NTB and 40% in BPR. Root activity, nodulation and the dry weight per plant of soybean at flowering stage were highest in NTB and lowest in PRT. Soybean yield in NTB was 3,070 kg/ha increasing 19%, whereas that in PRT was not increased. Therefore in case of a frequent rain during the cultivation of soybean in paddy field PRT could result in excess moisture level in soil, the cultivation without tillage is desirable.

Characteristics of Biodegradable Films and Their Effects on Soybean Growth

  • Ye Geon Kim;Hyo Jin Lee;Do Jin Lee;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.50-50
    • /
    • 2022
  • Recently, the use of mulching film has increased in soybean cultivation. Polyethylene (PE) films and biodegradable films (BF) have the advantages of improving soil moisture retention, geothermal maintenance, and CO2 maintenance as well providing weed control. Furthermore, BFs are a material that can compensate for the shortcomings of PE because it has the ability to decompose naturally by soil microorganisms, sunlight, and geothermal heat. Many researches have been carrying out studies regarding the development of BFs for these very reasons. This study was conducted better understand which films are optimal for soybean cultivation after evaluations of soybean growth and film characteristics of various BFs. BFs Farmsbio (Farm Hannong), Heulgro Film (Sejin Bio), Vonto Film (Eco-Hansung), two unnamed biodegradable films (Seojin Bio and Taesung), and a PE film were used in this study. For the control plots, no mulching was used. Experimental fields were fertilized according to conventional cultivation methods, tilled, and then covered with either BFs or PE films. After 1 week, soybean (cv. Daechan) seeds were seeded. Germination rate and plant height were measured at weekly intervals after seeding. In addition, pH, EC, and decomposition and light transmittance levels of films were measured during the experimental period. Daily average temperatures and relative humidity in soils was measured during the experimental period. There was no significant difference in germination rates and plant height in both crops grown with BFs and PE films, but crops grown in the control plot had significantly lower germination rates and growth. Soil pH was not significantly different regardless of treatments (BF, PE, and non-mulching) at 14, 28, and 42 days after seeding. In general, the EC contents in the control plots was lower than in crops grown using BFs and PE films. With the exception of some BFs, light transmittance and decomposition levels of films did not, in general, increase up to 70 days after soybean seeding. Since this study is ongoing, we are continually investigating these parameters. The average daily moisture in soil was higher in crops grown with BFs and PE films than in the control plot. However, the daily average soil temperature was not consistent regardless of treatments. Therefore, the BFs used in this study can be used without negative impacts on soybean growth.

  • PDF

Effect of Paddy-upland Rotation System on Soil Chemical Properties and Rice Yield (답전윤환형태별(畓田輪換形態別) 토양화학성(土壤化學性)과 수도생산성(水稻生産性) 변화(變化)에 관(關)한 연구(硏究))

  • Ahn, Sang-Bae;Motomatsu, T.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.181-188
    • /
    • 1993
  • The effects of paddy-upland rotation and cropping system on the mineralization of soil organic nitrigen, on the change of organic matter and available phosphorus content in the soil, and on the rice yield and nutrients absorption were studied in Seokcheon fine-sandy loam soil. 1. In the incubation test mineralzed soil nitrogen and the nitrogen extracted by pH 7 phosphate buffer solutions were higher in the soils from every and two year rotation systems than continuous rice cultivation. In terms of cropping system potato-chiness cabbage-rice increased them more than soybean-rice system. 2. The change of soil organic matter and available phosphorus contents were not much in continuous rice cultivation, while in rotation system they decreased as the paddy-upland rotation frequency decreased. In terms of cropping system they decresed more in potato-Chinese cabbage-rice system compared with soybean-rice systems. 3. The rice yield was higher in the paddy-upland rotation system than that of continuous rice cultivation. However, the effects were decreased gradually every year, as shown by 26~20, 17~5, and 5~4% yield increase for first, second, and third year, respectively, in potato-Chinese cabbage-rice and soybean-rice system compared with continuous rice cultivation. 4. All the absorbed nutrient contents increased in every and two year rotation system compared with continuous rice cultivation. In terms of cropping system potato-Chiness cabbage-rice system increased them more compared with soybean-rice system.

  • PDF

Optimal Cultivation Time for Yeast and Lactic Acid Bacteria in Fermented Milk and Effects of Fermented Soybean Meal on Rumen Degradability Using Nylon Bag Technique

  • Polyorach, S.;Poungchompu, O.;Wanapat, M.;Kang, S.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1273-1279
    • /
    • 2016
  • The objectives of this study were to determine an optimal cultivation time for populations of yeast and lactic acid bacteria (LAB) co-cultured in fermented milk and effects of soybean meal fermented milk (SBMFM) supplementation on rumen degradability in beef cattle using nylon bag technique. The study on an optimal cultivation time for yeast and LAB growth in fermented milk was determined at 0, 4, 8, 24, 48, 72, and 96 h post-cultivation. After fermenting for 4 days, an optimal cultivation time of yeast and LAB in fermented milk was selected and used for making the SBMFM product to study nylon bag technique. Two ruminal fistulated beef cattle ($410{\pm}10kg$) were used to study on the effect of SBMFM supplementation (0%, 3%, and 5% of total concentrate substrate) on rumen degradability using in situ method at incubation times of 0, 2, 4, 6, 12, 24, 48, and 72 h according to a Completely randomized design. The results revealed that the highest yeast and LAB population culture in fermented milk was found at 72 h-post cultivation. From in situ study, the soluble fractions at time zero (a), potential degradability (a+b) and effective degradability of dry matter (EDDM) linearly (p<0.01) increased with the increasing supplemental levels and the highest was in the 5% SBMFM supplemented group. However, there was no effect of SBMFM supplement on insoluble degradability fractions (b) and rate of degradation (c). In conclusion, the optimal fermented time for fermented milk with yeast and LAB was at 72 h-post cultivation and supplementation of SBMFM at 5% of total concentrate substrate could improve rumen degradability of beef cattle. However, further research on effect of SBMFM on rumen ecology and production performance in meat and milk should be conducted using in vivo both digestion and feeding trials.

Growth Responses of Soybean in Paddy Field Depending on Soil and Cultivation Methods (콩의 논 재배시 토성 및 재배 방법에 따른 콩의 생장분석)

  • Cho, Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.385-397
    • /
    • 2006
  • This study was conducted to establish the environment-friendly cropping system of soybean in paddy field with different soil textures. When the soybean was cultivated in paddy fields, growth responses of testing cultivars varied depending on soil texture and cultivation method. Growth responses of soybean in sandy loam tended to be better than those in clay, however the effect of high ridged cultivation was distinguished in clay loam. Especially, formation of rhizome nodule was significantly different depending on soils ; more numerous rhizome nodules were formed in sandy loam compared to that in clay. Plant heights of Taekwangkong and Eunhakong were highest in clay and sandy loam, respectively, while the number of pods and branches of Eunhakong were most in both soils. In clay paddy field, growth responses of Eunhakong were best among the testing cultivars, however high ridged cultivation was more appropriate to the cultivar compared to level row cultivation regardless of soils. Taekwangkong showed the highest leaf area indexes during whole growth stages. Leaf development of Daewonkong was suppressed in clay at early growth stage, while it significantly increased as growth stages progressed. Most retard leaf development was observed in early maturity cultivar, Hwaseongputkong, since it seemed to be seriously damaged by excess-moisture injury in both soils. Comparing the dry weight of top plants and roots, plant growth was more affected by soil texture than cultivation methods at early vegetative growth stage, via verses at R2 or R5 stages. In yield characters and yields at R8 maturity stage, pods number of Eunhakong was significantly higher than those of Daewonkong and Taekwangkong estimating to 107 and 124 in clay and sandy loam, respectively. The ratio of ripened seeds was highest in sandy loam in combination with high ridged cultivation, while the lowest in clay with level row. The yields of Deawonkong and Eunhakong were higher compared to other testing cultivars ranged from $l82{\sim}286kg/ha$ depending on soils and cultivation methods. In results, growth responses and yields of testing cultivars tended to be higher in sandy loam in combination with high ridge compared to clay with level row.

  • PDF

Effect of Crop Rotation on Control of Clubroot Disease of Chinese Cabbage Caused by Plasmodiophora brassicae (윤작작물 재배에 의한 배추 뿌리혹병 방제 효과)

  • Kim, Jeom-Soon;Lee, Jeong-Tae;Lee, Gye-Jun
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.242-247
    • /
    • 2009
  • To select rotation crops for control of clubroot of Chinese cabbage, potato, corn, soybean, onion and groundsel were planted in the field infected with clubroot pathogen (Plasmodiophora brassicae) in highland area in 2000. In comparison of economical efficiency among rotation crops, potato and onion gained about 16.9 and 14.9 times higher, respectively, than successive cultivation of Chinese cabbage. Resting spore densities of Plasmodiophora brassicae after harvesting rotation crops were in the range of $0.3{\sim}1.2{\times}10^3/g$ soil in all cultivated soils with rotation crops while that of successive Chinese cabbage cultivation soil was very high as much as $89.3{\times}10^3/g$ soil. And disease severity of Chinese cabbage clubroot was 4.9, 20.2, 24.4, 25.1 and 27.8% in onion, soybean, potato, corn, and groundsel cultivation plot, respectively, while that of successive Chinese cabbage cultivation plot was very high as 77.8%. Effect of rotation period of onion, potato, soybean on disease control was investigated from 2002 to 2005. Resting spore densities of Plasmodiophora brassicae after cultivating rotation crops were decreased until $2^{nd}$ year and maintained low density at $3^{rd}$ year in all plots, while that of successive Chinese cabbage cultivation plot was increased 2.6 to 23.6 times for three years. When Chinese cabbage was rotation-cultivated with potato, soybean and onion for three years, disease severities of Chinese cabbage clubroot decreased 92 to 4.4%, 72 to 10.4% and 72 to 12.2%, respectively, while that of successive Chinese cabbage cultivation plot maintained 100%. As the rotation period increased, the yields of Chinese cabbage increased, while that of successive Chinese cabbage cultivation plot decreased. At $3^{rd}$ year, Chinese cabbage with high quality could be much more produced 2,205, 2,493 and 2,476 g in potato, soybean and onion cultivation plot, respectively, than 95 g in successive Chinese cabbage cultivation plot.

Effect of Acalypha australis Occurrence on Soybean Growth and Economic Threshold Level of Acalypha australis (깨풀의 발생이 콩 생육에 미치는 영향 및 경제적 피해 한계수준)

  • Yoo, Ji-Hyock;Moon, Byeong-Chul;Lee, In-Yong;Kim, Doo-Ho
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.13-17
    • /
    • 2012
  • A field experiment was conducted to investigate the effect of Acalypha australis occurrence on the growth and yield of soybean, to predict the reduction rate of soybean yield caused by competing with A. australis and to establish the economic threshold of A. australis for soybean cultivation. As the density of A. australis increase, the height and stem length of soybean were not affected by the competition with A. australis, however, the yield of soybean was decreased as 11~51% as compared with weed-free condition. The relationship between weed density and soybean yield was established as Y=415.5 / (1+0.003356X) and the reduction rate of soybean yield were predicted from this equation. Compared with the weed-free condition, the reduction rate of soybean yield were calculated as 0.3~9%, 17~29%, and 40~46% when the density of A. australis were 1~30, 60~120, and 200~250 plants $m^{-2}$, respectively. The economic threshold level of A. australis for soybean cultivation was established as 6.3 plants $m^{-2}$ from the Cousens' equation.