• Title/Summary/Keyword: soybean cultivation

Search Result 360, Processing Time 0.326 seconds

Organogenesis and Production of Some Transgenic Legume Plants by Agrobacterium tumefaciens-mediated Herbicide Resistance Gene Transformation

  • Kantayos, Vipada;Lee, Hyo-Yeon;Bae, Chang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.52-52
    • /
    • 2018
  • Development of herbicide resistant transgenic legume plants through Agrobacterium-mediated transformation has been worked in many previous studied. Plant regeneration after infection is the important step to obtain successful transgenic plants. Many attempts try to find the optimum media condition for plant regeneration after infection. However, the transformation efficiency of legume plants is still low. In this study, regeneration of some Korean legume species including two soybean cultivars (Dawon and Pungsan) and pea have been done with organogenesis which is used various kind of explants such as cotyledonary-nodes in soybean and bud-containing tissue in pea. We developed the optimum media condition for plant regeneration regulators under Agrobacterium-mediated transformation using different kind and various concentration of plant growth. As the results, B5 medium containing 2 mg/L of 6-benzylaminopurine was selected in this study for the optimum plant regeneration media. The segments were inoculated with Agrobacterium suspension harbored an IG2 vector containing bar gene which confers resistance to phosphinotricin (PPT) in 3, 5 and 7 days. The transformation efficiency was achieved in Dawon 3.03 % and pea 1.46 % with co-cultivation period of 7 days which is showed a high number of GUS positive expression period.

  • PDF

$\alpha$-Glucosidase Inhibition by Culture Broth of Streptomyces sp. NS15 (Streptomyces sp. NS15 배양액에 의한 $\alpha$-Glucosidase 저해)

  • 백남수;김영만
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.640-646
    • /
    • 1998
  • For the production of nonprotein $\alpha$-glucosidase inhibitor from the Streptomyces sp. NS15 strain, effects of initial optimum pH, nitrogen sources, carbon sources, cationic metal ions, agitation speed and aeration rate were investigated. Initial optimum pH of medium was 7.0. The most effective nitrogen and carbon sources were soybean meal 2.0%(w/v) and glucose 1.6%(w/v), respectively. The cationic metal ins had no stimulating effect on inhibitory activity of $\alpha$-glucosidase except Fe2+. Agitation speed and aeration rate were effective at 400rpm and 1vvm, respectively. In the jar-fermenter cultivation for 4 days under optimal culture conditions, the culture broth showed the inhibitory acitivity of 3,200units/ml, which is 25 times higher than that of basic medium (CYM) for porcine intestinal $\alpha$-glucosidase. The inhibitory activity of $\alpha$-glucosidase reached about 3,200units/ml after 4 days of cultivation and decreased gradually for a further two days.

  • PDF

Cation and Nitrogen Contents, and Growth of Soybean against Underground Water Level at Reproductive Stage (생식생장기에 지하수위 처리가 콩의 생육과 질소 및 몇가지 양이온 함량에 미치는 영향)

  • Park, Gwan-Soo;Ahn, Tae-Hwan;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.225-230
    • /
    • 2009
  • This study was conducted to response the growth, seed yield, nitrogen content and different cation content of two soybean, flooding-tolerant cv. Pungsannamulkong (PNSK) and flooding-sensitive cv. Tawonkong (TWK) when these were subjected to flooding stress at R1 stage for cultivation in paddy field. Flooding, underground water levels (UWL) of 0 cm, 10 cm and 40 cm, was experimented from flowering time to harvest time. The dry matter and seed yield of soybean with UWL of 0 or 10 cm declined in comparison with UWL of 40 cm and these were more reduction in TWK than in PNSK. The amount of nitrogen uptake decreased in higher UWL and there was a high significant relationship $(R^2=0.872)$ between nitrogen content and seed yield at flooding stress. K content of leaf and stem in soybean plants had a small change with UWL but Ca content had a decrease (leaf and stem) or increase (root). Mn and Fe content were increased at higher UWL and were more in TWK than in PNSK.

Soybean Ecological Response and Seed Quality According to Altitude and Seeding Dates

  • Shin, Sang-Ouk;Shin, Seong-Hyu;Ha, Tae-Jeong;Lim, Sea-Gyu;Choi, Kyung-Jin;Baek, In-Youl;Lee, Sang-Chul;Park, Keum-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.143-158
    • /
    • 2009
  • This experiment was carried out to examine ecological response and soybean quality as affected by environmental cultivation for producing high seed quality in domestic soybean variety. The results are as follows: Under equal cumulative temperature condition, soybean plants grown in Muju showed longer days to flowering, which was an effect of the long day-length on high latitudes, and longer duration of reproductive stage as a result of low temperature within that period. Considering apparent seed quality, 100 seed weight of soybeans grown in Muju was heavier than Miryang. Ratio of seed crack and disease-damaged seeds was lower in Muju, and these parameters decreases as planting was delayed. The protein contents did not show significant difference in terms of altitude and planting date, however, crude oil contents were higher in Miryang. An opposite trend was observed in C18:1 and C18:3. In the fatty acid composition, the proportion of C18:1 decreased as seeding date was delayed, and was higher in Miryang. Opposite observations were obtained from C18:3. The anthocyanin contents were highest on June 10 planting and higher in Muju than in Miryang. Isoflavone content was higher as seeding date was delayed and is similar accross seeding dates in Muju. As a summary, for high seed quality production the optimum planting date was June 10, and Muju was more suitable region than Miryang.

Yield Response of Soybean [Glycine max (L.) Merrill] to High Temperature Condition in a Temperature Gradient Chamber

  • Baek, Jae-Kyeong;Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Cho, Jung-Il;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • Recently, abnormal weather conditions, such as extreme high temperatures and droughts, have increased in frequency due to climate change, there has accordingly been growing concern regarding the detrimental effects on field crop, including soybean. Therefore, this study was conducted to examine the effects of increased temperatures on soybean growth and yield using a temperature gradient chamber (TGC). Two major types of soybean cultivar, a medium- seed cultivar such as Daepung-2 and a large-seed cultivar such as Daechan, were used and four temperature treatments, aT+1℃ (ambient temperature+1℃), aT+2℃ (ambient temperature+2℃), aT+3℃ (ambient temperature+3℃) and aT+4℃ (ambient temperature+4℃) were established to examine the growth response and seed yield of each cultivar. Seed yield showed a higher correlation with seed weight (r=0.713***) and an increase in temperature affected seed yield by reducing the single seed weight. In particular, the seed growth rate of the large-seed cultivar (Daechan) increased at high temperature, resulting in a reduction in the number of days for full maturity. Our results accordingly indicate that large-seed cultivar, such as Daechan, is potentially vulnerable to high temperature stress. The results of this study can be used as basic data in the development of cultivation technology to reduce the damage caused by elevated temperatures. Also, further research is required to evaluate the response of each process contributing to seed yield production under high temperatures.

The Contents of Antinutritional Factors and Lipoxygenase Activity of the Recommended Soybean Varieties in Korea (장려품종 콩의 영양저해 인자 및 리폭시게나아제 특성)

  • Kim, Dong-Man;Baek, Hyung-Hee;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.393-397
    • /
    • 1990
  • The contents of the several antinutritional factors and lipoxygenase activity of 19 soybean varieties recommended for cultivation in Korea were analyzed. The ranges of raffinose and stachyose contents, which are the flatulence factors, were $0.74{\sim}1.58%\;d.b.\;and\;3.34{\sim}5.30%d.b.$, respectively and the total amount of these sugars was high in the varieties of Hill, Baekun and Jangbaek. The contents of trypsin inhibitor and phytate phosphorus in the soybean varieties ranged from 21.2 to 37.0 TI/g, d.b. and from 337 to 605mg%, d.b. respectively. The lipoxygenase activity of $163.6{\sim}403.5unit$ was shown in the 19 soybean varieties, and Padal, Jangbaek and S-133 were the varieties with the higest activity.

  • PDF

Detection of Recombinant Marker DNA in Genetically Modified Glyphosate- Tolerant Soybean and Use in Environmental Risk Assessment

  • Kim, Young-Tae;Park, Byoung-Keun;Hwang, Eui-Il;Yim, Nam-Hui;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.390-394
    • /
    • 2004
  • The genetically modified glyphosate-tolerant soybean contains the following introduced DNA sequences: the EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene from Agrobacterium sp. strain CP4, the 35S promoter from the cauliflower mosaic virus, and the NOS terminator from Agrobacterium tumefaciens. In the present study, detection of these introduced DNAs was performed by amplification using the polymerase chain reaction (PCR). A multiplex PCR method was also applied to prevent false positive results. When primers for 35S promoter, nos3', CTP(chloroplast transit peptide), and CP4 EPSPS (EPSPS from Agrobacterium sp. CP4) were used, positive results were obtained in PCR reactions using DNA from genetically modified glyphosate-tolerant soybeans. There were no false positive results when using DNA from non-genetically modified soybeans. The CP4 EPSPS gene was detected when less than 125 pg glyphosate-tolerant soybean DNA was amplified. Lectin Lel and psb A were amplified from both non-genetically modified and genetically modified glyphosate-tolerant soybean DNA. Multiplex PCR was performed using different primer sets for actin Sacl, 35S promoter and CP4 EPSPS. The actin gene was detectable in both non-genetically modified and glyphosate-tolerant soybeans as a constant endogenous gene. Target DNAs for the 35S promoter, and CP4 EPSPS were detected in samples containing 0.01-0.1% glyphosate-tolerant soybean, although there were variations depending on primers by multiplex PCR. Soybean seeds from five plants of non-genetically modified soybean were co-cultivated for six months with those of genetically modified soybean, and they were analyzed by PCR. As a result, they were not positive for 35S promoter, nos3' or CP4 EPSPS. Therefore, these results suggest there was no natural crossing of genes between glyphosate-tolerant and non-genetically modified soybean during co-cultivation, which indicates that gene transfer between these plants is unlikely to occur in nature.

Changes in Major Taste Components of Soybean Sprout Germinated with Extract of Korean Panax ginseng (인삼 추출물로 발아시킨 콩나물의 식품성분 변화)

  • 최상도;김윤희;남상해;손미예;최재훈
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.273-279
    • /
    • 2003
  • Changes in weight, length, amino acids, organic acids and free sugars of soybean sprouts germinated with extract of Panax ginseng(PGE, 100∼400 ppm) were investigated. PGE increased the weight and length of soybean sprouts. Content of total amino acid in soybean sprout germinated at 100 ppm of PGE after cultivation for 3 days was the most abundant and then decreased by increasing the concentration of PGE. Content of aspartic acid was increased with culture time, but that of glutamic acid was shown to be an opposite trend. Content of total free sugar was increased by increasing culture time and not affected by concentration of PGE. Content of sucrose in control group during growth of soybean sprout was decreased, but sucrose contents in PGE groups were increased to 3 days and decreased thereafter. However, the other sugars were continuously increased for 4 days. Content of total organic acids was the most abundant in soybean sprouts germinated with 200 ppm of PGE and cultured for 3 days. Phytic acid was a major organic acid, showing the range of 45 to 60% for total organic acids. In conclusion, PGE as sprouting water of soybean was effective to increase of growth, contents of amino acids and organic acids in soybean sprouts, indicating that PGE accelerated the quality of soybean sprouts.