• Title/Summary/Keyword: soybean breeding

Search Result 220, Processing Time 0.034 seconds

Status of Molecular Biotechnology Research Based on Tissue Culture of Soybean (콩 조직배양 기술에 기반한 생명공학 연구 동향)

  • Seo, Mi-Suk;Cho, Chuloh;Choi, Man-Soo;Chun, JaeBuhm;Jin, Mina;Kim, Dool-Yi
    • Korean Journal of Plant Resources
    • /
    • v.33 no.5
    • /
    • pp.536-549
    • /
    • 2020
  • Soybean (Glycine max (L.) Merrill) is one of the most important crops of the world. With the completion of the soybean genome sequence, the Korean soybean core collection consisted of 430 accessions with genetic and phenotypic diversity was constructed in recent year. The availability of genome sequences and core collection will result in the crop improvement by molecular breeding using the various accessions and genome editing approaches. Efficient tissue culture techniques, such as haploid production, protoplast culture and plant regeneration from various organs are essential for the successful molecular biological approach and crop improvement. However, soybean is still considered to be recalcitrant in tissue culture because of the low frequency of regeneration and limitation of available responsive cultivars. In this study, we discuss the recent studies of tissue culture technology and methodology for efficient tissue culture to genetic improvement and application of molecular biotechnology in soybean.

A comparison of the characteristic properties between soybean (Glycine max [L.] Merrill) seeds with different seed coat colors

  • Oh, Sung-Dug;Yeo, Yunsoo;Lee, So-Young;Suh, Sang Jae;Moon, Jung Kyung;Park, Soo-Kwon;Park, Soo-Yun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.971-980
    • /
    • 2019
  • We profiled the health-promoting bioactive components in nine types of soybean seeds with different seed coat colors (yellow, green, brown, and black) and investigated the effects of different extraction solvents (methanol, ethanol, and water) on their antioxidant activities. The carotenoid and anthocyanin compositions varied greatly by seed color, and the phenolic acids, total phenol, and total flavonoid contents differed by genotype. The carotenoid content was relatively higher in soybean seeds with green and black seed coats than in those with a yellow seed coat while lutein was the most plentiful. The anthocyanin content was considerably higher in the soybean seed with the black seed coat. The results of the DPPH assay showed strong antioxidative activities in the methanol- and water-extracts compared to the ethanol-extract, irrespective of the seed coat colors. Moreover, the soybean seeds with the black seed coat exhibited the highest antioxidant activity among the samples, regardless of the extraction solvent used. Eighteen bioactive compounds were subjected to data-mining processes including principal component analysis and hierarchical clustering analysis. Multivariate analyses showed that brown and black seeds were distinct from the yellow and green seeds in terms of the levels of carotenoids and anthocyanins, respectively. These results help our understanding of the compositional differences in the bioactive components among soybean seeds of various colors, providing valuable information for future breeding programs that seek to enhance the levels of compounds with health benefits.

Analysis of Quantitative Trait Loci (QTLs) for Unsaturated Fatty Acid Contents in Soybean Seed Using Recombinant Inbred Lines (콩에서 microsatellite marker를 이용한 불포화지방산 함량의 양적형질 유전자좌의 분석)

  • Kim, Hyeun-Kyeung;Im, Moo-Hyeog;Choung, Myoung-Gun
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1665-1670
    • /
    • 2008
  • Soybean oil is an important source of vegetable oil for human food and nonfood applications and accounts for approximately 22% of the world's total edible oil production. Improvement of the quality and quantity of soybean seed oil constituents is one of the most important objectives in soybean breeding. The objective of this study was to identify quantitative trait loci (QTLs) that control oleic, linoleic, and linolenic acid contents in soybean. The 117 $F_{2:10}$ recombinant inbred lines (RIL) developed from a cross of 'Keunolkong' and 'Shinpaldalkong' were used. Narrow-sense heritability estimates based on a plot mean on seed weight, protein and oil content were 0.85, 0.82 and 0.81, respectively. Eight independent QTLs for oleic acid content were identified from linkage group (LG) A2, C1, D2, F, G, L, and O. Seven QTLs for linoleic acid content were located on LG D1b, E, H, I and L. Oil content was related with five QTLs located on LG C1, H, J, K, and L. Oleic, linoleic, and linolenic acid have two common QTLs on LG C1 and L. Thus, we identified major loci improving soybean oil quality.

Chemical Components of Black Soybean Seeds Collected in Korea (수집 재래 검정콩의 화학적 성분)

  • Kim, Seok-Dong;Kim, Yong-Ho;Hong, Eun-Hi;Lee, Hong-Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 1993
  • The 1,081 soybean genotypes including 972 black soybeans and 109 other colored soybeans were collected in 197 locations from January to April, 1991. Seed chemical components of soybean collections in relation to growth characters were evaluated to survey germplasms for black soybean breeding for seed quality. Seeds of 1,081 genotypes collected were analyzed for crude protein, crude lipid, and total sugar contents. The crude protein content was averaged to 39.8% and ranged from 34.1% to 48.0%. The average crude lipid and total sugar contents were 20.1% and 10.1%, and the ranges of those were 14.1% to 23.8% and 8.3% to 12.1%, respectively. Higher crude protein content was shown in early soybean maturity group, whereas higher total sugar content was in late group. Black soybean collections with green seed embryo tended to be higher in total sugar content than those with yellow one. Black soybean oil is generally composed of about 22% oleic, 55% linoleic, 7% linolenic acid, and 16% the others.

  • PDF

Positional mapping for foxglove aphid resistance with 180k SNP array in soybean [Glycine max (L.) Merr.]

  • Park, Sumin;Kim, Kyung Hye;Go, Hong Min;Lee, Ju Seok;Jung, Jin Kyo;Bilyeu, Kristin D.;Lee, Jeong-Dong;Kan, Sungtaeg
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.145-145
    • /
    • 2017
  • Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative genes to foxglove aphid resistance in wild soybean, PI 366121 (Glycine soja Sieb. and Zucc.). One hundred and forty-one F4:8 recombinant inbred lines developed from a cross between susceptible variety, Williams 82 and foxglove aphid resistance wild soybean, PI 366121 were used. The two type of resistance response, antibiosis and antixenosis resistance were evaluated through choice and no-choice test, graded by the degree of total plant damage and primary infestation leaf damage; a genome-wide molecular linkage map was constructed with 29,898 single-nucleotide polymorphism markers utilizing a Axiom(R) 180K soyaSNP array. Using inclusive composite interval mapping analysis for foxglove aphid resistance, one major candidate QTL on chromosome 7 was identified. The major QTL on chromosome 7 showed both antixenosis and antibiosis resistance responses. The newly identified major QTL was consistent with previously reported QTL, Raso2, which showed around 5 times narrow down interval range with 8 candidate genes. Furthermore, total 1,115 soybean varieties including Glycine soja and Glycine max were exposed to germplasm screening, and 31 varieties, which showed significant antibiosis type foxglove aphid resistance were identified. This result could be useful in breeding for new foxglove aphid resistant soybean cultivars and developing novel insecticides.

  • PDF

Non-destructive Method for Selection of Soybean Lines Contained High Protein and Oil by Near Infrared Reflectance Spectroscopy

  • Choung, Myoung-Gun;Baek, In-Youl;Kang, Sung-Taeg;Han, Won-Young;Shin, Doo-Chull;Moon, Huhn-Pal;Kang, Kwang-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.401-406
    • /
    • 2001
  • The applicability of non-destructive near infrared reflectance spectroscopic (NIRS) method was tested to determine the protein and oil contents of intact soybean [Glycine max (L.) Merr.] seeds. A total of 198 soybean calibration samples and 101 validation samples were used for NIRS equation development and validation, respectively. In the developed non-destructive NIRS equation for analysis of protein and oil contents, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing, and 1 point second smoothing) and 2, 1, 20, 10 math treatment conditions with Standard Normal Variate and Detrend (SNVD) scatter correction method and entire spectrum (400-2500 nm) by using Modified Partial Least Squares (MPLS) regression, respectively. Validation of these non-destructive NIRS equations showed very low bias (protein: 0.060%, oil: -0.017%) and standard error of prediction (SEP, protein: 0.568 %, oil : 0.451 %) as well as high coefficient of determination ($R^2$, protein: 0.927, oil: 0.906). Therefore, these non-destructive NIRS equations can be applicable and reliable for determination of protein and oil content of intact soybean seeds, and non-destructive NIRS method could be used as a mass screening technique for selection of high protein and oil soybean in breeding programs.

  • PDF

A Systematic Proteome Study of Seed Storage Proteins from Two Soybean Genotypes

  • Cho, Seong-Woo;Kwon, Soo-Jeong;Roy, Swapan Kumar;Kim, Hong-Sig;Lee, Chul-Won;Woo, Sun Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.359-363
    • /
    • 2014
  • Soybean seed is a good source of plant protein in human consumables such as baby formula and protein concentrate. The seeds contain an abundance of storage proteins, namely ${\beta}$-conglycin and glycinin that account for ~ 70-80% of the total seed protein content. Proteome profiling has been proved to be an efficient way that can help us to investigate the seed storage proteins. In the present study, the seeds were removed from the pods and the cotylendonary tissues were separated from the testa for proteome analysis in order to investigate the seed storage proteins. A systematic proteome profiling was conducted through one-dimensional gel electrophoresis followed by MALDI-TOF-TOF mass spectrometry in the seeds (cotyledonary tissue) of soybean genotypes. Two dimensional gels stained with CBB, a total of 10 proteins were identified and analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. A total of ten proteins such as glycinin Gy4 precursor, glycinin G3 precursor, glycinin G1 precursor, glycinin chain A2B1a precursor, glycinin chain A2B1a precursor were identified in our investigation. However, the glycinin subunit may be considered to play important roles in soybean breeding and biochemical characterization. In addition, the improved technique will be useful to dissect the genetic control of glycinin expression in soybean.

Comparison of Anthocyanin Content in Seed Coats of Black Soybean [Glycine max(L.) Merr.] Cultivars Using Liquid Chromatography Coupled to Tandem Mass Spectrometry

  • Shin, Sung-Chul;Lee, Soo-Jung;Lee, Sung-Joong;Chung, Jong-Il;Bae, Dong-Won;Kim, Soo-Taek;Sung, Nak-Ju
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1470-1475
    • /
    • 2009
  • The seed coat of the black soybean contains 3 main anthocyanins such as delphinidin-3-O-$\beta$-glucoside, cyanidin-3-O-$\beta$-glucoside, and petunidin-3-O-$\beta$-glucoside. As a part of our effort on discovering and breeding new black soybean cultivars which possesses specific anthocyanin component rich, we determined the anthocyanin profiles of the 2 cultivars recently developed soybean cv. Gaechuck #1 and cv. Gyeongsang #1, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and compared their content and identity with those of previously known 10 cultivar controls. The Cosmosil-$5C_{18}$-AR-II column were selected for the analysis because of the best peak separation. The column temperature was set up at $35^{\circ}C$. The mobile phase consisting of water containing 0.5%(v/v) formic acid and methanol gave good separation between the 3 anthocyanin analytes and internal standard (quercetin 3-O-$\beta$-rutinoside) and peaks with suppressed tail. The MS/MS spectra of each individual anthocyanin standard were detected in positive electron spray ionization (ESI) modes. It was disclosed that the anthocyanin contents of the soybean cv. Gaechuck#1 and cv. Gyeongsang#1 are roughly higher than those of the 10 controls.

Efficient Transformation Method of Soybean Using Meristematic Tissues of Germinating Seeds (발아종자의 분열조직을 이용한 효율적인 콩 형질전환 방법)

  • Kim, Yul-Ho;Park, Hyang-Mi;Choi, Man-Soo;Sohn, Soo-In;Shin, Dong-Bum;Lee, Jang-Yong
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.278-285
    • /
    • 2008
  • An efficient transformation method for soybean [Glycine max (L.) Merr.] using meristematic tissues of germinating seeds has been established. The embryonic axes were excised from germinating seeds of Korean soybean cultivar, Iksannamulkong and 0.5-2 cm long segment containing meristematic tissues were prepared by cutting hypocotyl region. The explants were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector with the bar gene as a selectable marker gene and a ${\beta}-glucuronidase$ (GUSINT) reporter gene, and then co-cultured for 7 days on co-cultivation medium (CCM). The meristematic tissues were cultured on shoot induction medium (SIMP6) supplemented with 0.4 mg/l $N_6-benzylaminopurine$ (BAP) and 0.1 mg/l indolebutyric acid (IBA) in the presence of 6 mg/l L-phosphinotricin (PPT) for 2 weeks and the surviving explants were transferred to shoot elongation medium (SEMP6). Transformation was confirmed by Southern blot analysis and the transformation efficiencies ranged from 1.48 to 2.07%. The new modified transformation method was successfully implemented for obtaining several transgenic lines with SMV-CP gene. It is expected that this method could efficiently be used for the transformation of recalcitrant soybean cultivars.

A New Sprout-soybean Cultivar, "Hoseo" with Early maturity, Small Seed Size and High Sprout yielding (극소립·조숙 고수율 나물콩 신품종 "호서")

  • Oh, Young-Jin;Cho, Sang-Kyun;Kim, Kyong-Ho;Kim, Young-Jin;Kim, Tae-Soo;Kim, Jung-Gon;Moon, Jung-Kyung;Han, Won-Young;Kim, Hyun-Tae;Ko, Jong-Min;Yun, Hong-Tae;Baek, In-Youl;Kim, Dong-Kwan;Kim, Yong-Duk
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.479-483
    • /
    • 2008
  • A new sprout-soybean cultivar, "Hoseo" was developed at the Honam Agricultural Research Institute (HARI) in 2007. Hoseo was selected from a cross between Camp and Nattosan. The preliminary, advanced, and regional yield trials to evaluate the performance of Iksan 57 were carried out from 2003 to 2007. This cultivar has a determinate growth habit with purple flower, grayish brown pubescence, yellow seed coat, grayish brown hilum, rhomboid leaflet shape and small seed size (7.4 g/100 seeds). The maturity date of "Hoseo" is 12 days earlier than the check variety, "Pungsan". It has good seed quality for soybean-sprout and resistance to lodging. This cultivar has resistance to soybean mosaic virus (SMV) and necrotic symptom (SMV-N). The average yield of "Hoseo" was 2.51 ton per hectare in the regional yield trials (RYT) for double cropping carried out for three years from 2005 to 2007.