• Title/Summary/Keyword: source-Sink model

Search Result 74, Processing Time 0.024 seconds

Power Maximization of a Heat Engine Between the Heat Source and Sink with Finite Heat Capacity Rates (유한한 열용량의 열원 및 열침 조건에서 열기관의 출력 극대화)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.556-561
    • /
    • 2011
  • In this study, the theoretical maximum power of a heat engine was investigated by sequential Carnot cycle model, for a low-grade heat source of about $100^{\circ}C$. In contrast to conventional approaches, the pattern search algorithm was employed to optimize the two design variables to maximize power. Variations of the maximum power and the optimum values of design variables were investigated for a wide range of UA(overall heat transfer conductance) change. The results show that maximizing heat source utilization does not always maximize power.

Role of Mesophyll Morphology in Determination of Leaf Photosynthesis in Field Grown Soybeans (포장생육대두의 엽광합성과정에서 엽육세포 형태의 역할)

  • Yun, Jin Il;Lauer, Michael J.;Taylo, S.Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.6
    • /
    • pp.560-567
    • /
    • 1991
  • Photosynthetic variation in field grown soybean [Glycine max (L.) Merr. cv Hodgson78] was studied in relation to leaf anatomical variation. Variations in mesophyll morphology were accentuated by manipulating source and sink size. At R3 stage, two treatments were started: one was thinning and continu-ous debranching(6. 5 plants rather than 26 plants per m of row and remaining plants were debranched weekly), and the other was continuous partial depodding (allowing only one pod to develop at each mainstem node). Gas exchange characteristics, mesophyll cell volume and surface area per unit leaf surface, and microclimatic parameters were measured on the intact terminal leaflet at the 10th node. Observations were made 5 times with 3 to 4 day intervals starting R4 stage. Two models were used to compute leaf photosynthetic rates: one considered no effect of mesophyll morphology on photosynthesis, and the other considered potential effects of variations in mesophyll cell volume and surface area on diffusion and biochemical processes. Seventy nine percent of total photosynthetic variations observed in the experiment was explained by the latter, while 69% of the same variations was explained by the former model. By incorporating the mesophyll morphology concept, the predictability was improved by 14.6% in the field condition. Additional Index Words: photosynthesis model, leaf anatomy, Glycine max (L.) Merr., mesophyll surface area, mesophyll cell volume.

  • PDF

The Operation Characteristics of a Sea Water Source Heat Pump System (해수열원 히트펌프 시스템의 운전특성)

  • Chang, Ki-Chang;Baik, Young-Jin;Ra, Ho-Sang;Kim, Ji-Young;Lee, Jae-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1353-1357
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

A Design and Test of a Sea Water Source Heat Pump System (해수열원 히트펌프 시스템의 설계 및 운전)

  • Lee, Jae-Hun;Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1273-1278
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong Hoon;Huh, Kang Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF

Study on Evaluation Method of Thermal Potential of Unused Energy (미활용에너지의 열 포텐셜 평가 수법에 관한 연구)

  • Chung, Yong-Hyun
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.493-501
    • /
    • 2006
  • The increase in environmental loads and energy consumptions has resulted in the need of developed new forms of energy for a sustainable use for the society. Recently, the viability of using unused energy has attracted a great deal of attention. From the view point of using unused energy, the most critical problem can be referred to as the distance between the heat source/sink and heat demand area. The water resource in the city water system was used to solve this distance problem with unused energy. The calculation method of the potential use unit was used to survey the potential of the water resource in the city water system. The amount of theoretical unused energy and energy savings in the model city were estimated using this method. It is estimated that the amounts of energy savings and $CO_2$ reduction correspond to 131.3 GWh and 29280[t-C], respectively, per annual basis.

A STUDY ON THE UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOER USING EULER EQUATIONS AND FREE WAKE METHOD (오일러 방정식과 자유 후류법을 이용한 헬리콥터 로터의 비정상 공력 해석 연구)

  • Lee, Jae-Hun;Wie, Seong-Yong;Kwon, Jang-Hyuk;Lee, Duck-Joo;Kim, Da-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.116-119
    • /
    • 2007
  • In this study the unsteady aerodynamic analysis of a hovering helicopter rotor is performed. For the accurate flow field analysis Euler equations and the free wake method are coupled. The Euler equations are solved to find the pressure distribution around the rotor, and free wake method is used to give the boundary condition for the solution of Euler equations. Also, vortex strength and wake motion after the rotor are simulated by the free wake method. The accuracy of the present method is compared with the source sink model. The present method is applied to the hovering Caradonna-Tung rotor and compared with experimental results.

  • PDF

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법에 근거한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong-Hoon;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.49-56
    • /
    • 2003
  • Mathematical formulation of the zone conditional two-fluid model is established to consider flame-generated turbulence in premixed turbulent combustion. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin flamelets. The transverse component of rms velocities in burned zone become larger than axial component in the core of turbulent flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface.

  • PDF

Design of automobile body shape by using panel method (파넬법을 이용한 자동차의 외형설계)

  • 이동호;강신영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.54-61
    • /
    • 1984
  • Numerical calculation of the flow field past a passenger car was carried out by using a panel method with a small computer of 5Mbyte memory size. The shape of car body was simplified and reconstructed by 2180 panels on which a constant strength sink (or source) was distributed. The separation of flow from the surface and the wake flow were not considered in the calculation because of the computer memory limitation. All of the results of calculation were presented by using a 3-dimensional computer graphics. In spite of small memory size of computer, generally good agreements were obtained, except the separated region, from the comparison of pressure distribution between numerical analysis and wind tunnel experiment with 1/5 scaled model.

  • PDF

Joint Radio Selection and Relay Scheme through Optimization Model in Multi-Radio Sensor Networks

  • Lee, HyungJune
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4451-4466
    • /
    • 2014
  • We present joint radio selection and relay scheme that delivers data from a source to a sink in heterogeneous stationary sensor networks consisting of various radio interfaces. The proposed scheme finds the optimal relay nodes and their corresponding radio interfaces that minimize energy consumption throughout the network while satisfying the end-to-end packet deadline requirement. We formulate the problem of routing through radio interface selection into binary integer programs, and obtain the optimal solution by solving with an optimization solver. We examine a trade-off relationship between energy consumption and packet delay based on network level simulations. We show that given the end-to-end deadline requirement, our routing algorithm finds the most energy-efficient routing path and radio interface across mesh hops. We demonstrate that the proposed routing scheme exploits the given packet delivery time to turn into network benefit of reducing energy consumption compared to routing based on single radio interface.