• Title/Summary/Keyword: source to detector distance

Search Result 101, Processing Time 0.03 seconds

Evaluation of the Scar Treatment using Near Infrared Diffuse Reflectance Spectroscopy (근적외선 확산반사 분광법을 이용한 흉터치료 평가)

  • Jang, I.J.;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Monitoring of dermal collagen is important to assess various scar conditions, and many diagnostic methods have been applied to quantify collagen contents in scar tissue. In this study, Monte Carlo simulation was used to evaluate diffuse reflectance distributions in scar condition by a near-infrared laser source. The results showed that the effective distance of the light source and the detector was 2 mm to monitor the various scar conditions using diffuse reflectance spectroscopy. This study may suggest to the optimal design for a near infrared diffuse reflectance spectroscopy during the scar treatment.

The Study Image Aquisition System for Radiation Source Using the Stereo Gamma-ray Detector (스테레오 감마선 탐지장치를 이용한 감마선원 분포측정 시스템에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Lee, Seung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Nuclear power plant has increased continuously for power production in all over the world and the interest about nuclear accident and the dismantling of aging nuclear power plant has been a growing. The leaked radioactive source that is generated by radiation accidents must detect and remove to minimized the damage as soon as possible. Gamma-ray detection system that have been developed until now cannot provide the precise position of radioactive sources because they detect and imaging the position of radiation sources in just two dimensions. In this paper, stereo gamma ray detection system has developed and the algorithm for calculation of the distance has implemented to be able to measure the distribution of the leakage gamma ray source for the system. Stereo camera calibration for distance detection was conducted with the correction pattern and LED light and we carried out performance test of the system for the LED light source and a gamma ray source. In both experiments the results of the performance test, it was confirmed to have a 5% error. The results of this paper is used as a material for the development of gamma-ray imaging device.

Phoswich Detector for Simultaneous Measuring Alpha/beta Particles (알파/베타선 동시측정용 phoswich 검출기)

  • Kim, Gye-Hong;Park, Chan-Hee;Lee, Kune-Woo;Jung, Chong-Hun;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • The new type phoswich detector consisting of the ZnS(Ag) and plastic scintillator for alpha/beta-ray simultaneous counting was developed for monitoring radiological contamination inside pipes. The detection performance was estimated using the PSD (pulse shape discrimination) method as a function of distance between the scintillator and radioactive source. The attenuation of particles traveling through a thin film for preventing the detector from being contaminated was experimentally estimated. It is concluded from our investigation that the phoswich detector developed can provide a sufficient alpha/beta-ray discrimination. The application of a thin film for preventing the detector from being contaminated was proven to be feasible.

  • PDF

Anisotropy in a Few mm Regions from an Ir192 High Dose Rate Source Measured with a GafChromic Film in Acrylic Phantom (아크릴 팬톰에서 GafChromic 필름을 이용한 고선량률 근접 치료용 Ir-192 선원의 근접 거리에서 비등방성 측정)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Park, Jin-Ho;Cho, Byung-Chul;Shin, Dong-Oh;Soo il Kwon;Chun, Ha-Chung;John J K Loh;Kim, Woo-Chul
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Radiochromic film has several advantages; high spatial resolution, relatively low spectral sensitivity, near tissue equivalence and requires no special development procedure. The object of this study was to measure the anisotropy of an Ir-192 source (microSelectron manufactured by Nucletron) in a few mm regions from the source, using the GafChromic film. The GafChromic film was calibrated in the range of 0∼105 Gy, using a 4 MV photon beam, and the anisotropy function measured in an acrylic phantom using the GafChroimic film. The data obtained gave agreement to within 4.4% of the Monte Calro calculation, by J. F. Williamson, at a radial distance of 2.5 mm with polar angles of 50 to 130$^{\circ}$, while a maximum deviation of 17.6% was observed at angles near 140$^{\circ}$and agreement within 3.7% at a radial distance of 5 mm at polar angles between 35 to 150$^{\circ}$ and a maximum deviation of 7.6% was observed at angles near 30$^{\circ}$. A GafChromic film can be used as a more efficient detector for measuring the anisotropy of an HDR $^{192}$ Ir source at close distances than any other detector.

  • PDF

Regional Image Noise Analysis for Steel-tube X-ray Image (강판튜브 엑스선 영상의 영역별 영상잡음 특성분석)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.32-34
    • /
    • 2007
  • The X-ray projection system has long been used for steel-tube inspection and weld monitoring. The thickness of tubes and welded areas is based on the evaluation of radiographic shadow projections. The traditional tangential measurement estimates the distance of border lines of the projected wall shadows of a tube onto a radiographic image detector. The detected image in which although there is a variety of noise may be sectioned into several partitions according to its specific blocks. Imaging noise originates from most of elements of the system, such as shielding CCD camera, imaging screen, X-ray source, inspected object, electronic circuits and etc. The tangential projection incorrectness and noise influence on imaging quality. In this paper we first sectionalize the X-ray image on the basis of vertical contrast difference. And next functional and statistic analysis are carried on at each region. Geometrical distance and unsharpness of the edge caused by visual evaluation uncertainties are also discussed.

  • PDF

Evaluation of Angle Dependence on Positional Radioisotope Source Detector using Monte Carlo Simulation in NDT (몬테카를로 시뮬레이션을 이용한 방사선원 위치 검출기의 각도의존성 연구)

  • Han, Moojae;Heo, Seunguk;Shin, Yohan;Jung, Jaehoon;Kim, Kyotae;Heo, Yeji;Lee, Deukhee;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.141-146
    • /
    • 2019
  • Radiation sources used in the field of industrial non-destructive pose a risk of exposure due to ageing equipment and operator carelessness. Thus, the need for a safety management system to trace the location of the source is being added. In this study, Monte Carlo Simulation was performed to analyse the angle dependence of the unit-cell comprising the line-array dosimeter for tracking the location of radiation sources. As a result, the margin of error for the top 10% of each slope was 5.90% at $0^{\circ}$, 8.08% at $30^{\circ}$, and 20.90% at $60^{\circ}$. The ratio of the total absorbed dose was 83.77% at $30^{\circ}$ and 53.36% at $60^{\circ}$ based on $0^{\circ}$(100%) and showed a tendency to decrease with increasing slope. For all gradients, the maximum number was shown at $30^{\circ}$ No. 9 pixels, and for No. 10, there was a tendency to drop 7.24 percent. This study has shown a large amount of angle dependence, and it is estimated that the proper distance between the source and line-array dosimeters should be maintained at a distance of not less than 1 cm to reduce them.

Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment

  • Kim, Jeong Ho;Park, Ki Hyun;Joo, Koan Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.801-805
    • /
    • 2018
  • In this study, an underwater radiation detector was built using a GAGG(Ce) scintillator and silicon photomultiplier to establish an underwater radiation exposure monitoring system. The GAGG(Ce) scintillator is suitable for small radiation detectors as it strongly absorbs gamma rays and has a high light emission rate with no deliquescent properties. Additionally, the silicon photomultiplier is a light sensor with characteristics such as small size and low applied voltage. Further, a program and mobile app were developed to monitor the radiation coefficient values generated from the detector. According to the results of the evaluation of the characteristics of the underwater radiation monitoring system, when tested for its responsiveness to radiation intensity and reactivity, the system exhibited a coefficient of determination of at least 0.99 with respect to the radiation source distance. Additionally, when tested for its underwater environmental temperature dependence, the monitoring system exhibited an increase in the count rate up to a certain temperature because of the increasing dark current and a decrease in the count rate because of decreasing overvoltage. Extended studies based on the results of this study are expected to greatly contribute to immediate and continuing evaluation of the degree of radioactive contamination in underwater environments.

Center Determination for Cone-Beam X-ray Tomography

  • Narkbuakaew, W.;Ngamanekrat, S.;Withayachumnankul, W.;Pintavirooj, C.;Sangworasil, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1885-1888
    • /
    • 2004
  • In order to render 3D model of the bone, the stack of cross-sectional images must be reconstructed from a series of X-ray radiographs, served as the projections. In the case where the distance between x-ray source and detector is not infinite, image reconstruction from projection based on parallel-beam geometry provides an error in the cross-sectional image. In such case, image reconstruction from projection based on conebeam geometry must be exercised instead. This paper is devoted to the determination of detector center for SART conebeam Technique which is critically effect the performance of the resulting 3D modeling.

  • PDF

Performance analysis of the visible light communication in seawater channel (해수채널 환경에서 가시광 통신 성능 해석)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.527-532
    • /
    • 2013
  • The wireless visible light communication technology has received great attention for high-data rate services in the room and underwater. However, performance of a visible light seawater link is limited by multiple constraints from the current light source and detector technology, and underwater channel conditions. In this paper, performance of the line of sight underwater link was analyzed in terms of signal to noise ratio and bit error rate of the detector. Roles of different parameters such as data rate, transmission distance, and attenuation coefficient, are studied. Through the modeling and simulation of the OOK and L-PPM modulation technologies for undersea environment application, the advantages and limitations are described in detail.

Monte Carlo Simulation on Light Distribution in Turbid Material (혼탁매질에서 광분포에 관한 Monte Carlo 시뮬레이션)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 1998
  • The propagation of light radiation in a turbid medium is an important problem that confronts dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. Scattered light is measured as a function of the position(distance r, depth z) between the axis of the incident beam and the detection spot. Turbid sample yields a very forward-directed scattering pattern at short range of position from source to detector, whereas the thicker samples greatly attenuated the on-axis intensity at long range of position. The portions of scattered light reflected from or transmitted throughphantom depend upon internal reflectance and absorption properties of the phantom. Monte Carlo simulation method for modelling light transport in tissue is applied. It uses the photon is moved a distance where it may be scattered, absorbed, propagated, internally reflected, or transmitted out of tissue. The photon is repeatedly moved until it either escape from or is absorbed by the phantom. In order to obtain an optimum therapeutic ratio in phantom material, optimum control the light energy fluence rate is essential. This study is to discuss the physical mechanisms determining the actual light dose in phantom. Permitting a qualitative understanding of the measurements. It may also aid in designing the best model for laser medicine and application of medical engineering.