• 제목/요약/키워드: source monitoring

검색결과 1,184건 처리시간 0.023초

FAULT DETECTION, MONITORING AND DIAGNOSIS OF SEQUENCING BATCH REACTOR FOR INTEGRATED WASTEWATER TREATMENT MANAGEMENT SYSTEM

  • Yoo, Chang-Kyoo;Vanrolleghem, Peter A.;Lee, In-Beum
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.63-76
    • /
    • 2006
  • Multivariate analysis and batch monitoring on a pilot-scale sequencing batch reactor (SBR) are described for integrated wastewater treatment management system, where a batchwise multiway independent component analysis method (MICA) are used to extract meaningful hidden information from non-Gaussian wastewater treatment data. Three-way batch data of SBR are unfolded batch-wisely, and then a non-Gaussian multivariate monitoring method is used to capture the non-Gaussian characteristics of normal batches in biological wastewater treatment plant. It is successfully applied to an 80L SBR for biological wastewater treatment, which is characterized by a variety of error sources with non-Gaussian characteristics. The batchwise multivariate monitoring results of a pilot-scale SBR for integrated wastewater treatment management system showed more powerful monitoring performance on a WWTP application than the conventional method since it can extract non-Gaussian source signals which are independent and cross-correlation of variables.

Sequential patient recruitment monitoring in multi-center clinical trials

  • Kim, Dong-Yun;Han, Sung-Min;Youngblood, Marston Jr.
    • Communications for Statistical Applications and Methods
    • /
    • 제25권5호
    • /
    • pp.501-512
    • /
    • 2018
  • We propose Sequential Patient Recruitment Monitoring (SPRM), a new monitoring procedure for patient recruitment in a clinical trial. Based on the sequential probability ratio test using improved stopping boundaries by Woodroofe, the method allows for continuous monitoring of the rate of enrollment. It gives an early warning when the recruitment is unlikely to achieve the target enrollment. The packet data approach combined with the Central Limit Theorem makes the method robust to the distribution of the recruitment entry pattern. A straightforward application of the counting process framework can be used to estimate the probability to achieve the target enrollment under the assumption that the current trend continues. The required extension of the recruitment period can also be derived for a given confidence level. SPRM is a new, continuous patient recruitment monitoring tool that provides an opportunity for corrective action in a timely manner. It is suitable for the modern, centralized data management environment and requires minimal effort to maintain. We illustrate this method using real data from two well-known, multicenter, phase III clinical trials.

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.

목재 섬유판의 음향방출 위치표정과 재료 특성 평가 (Acoustic Emission Source Location and Material Characterization Evaluation of Fiberboards)

  • 노승남;박익근;서성원;김용권
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.96-102
    • /
    • 2005
  • Acoustic Emission(AE) technique has been applied to not only material characterization evaluation but also on-line monitoring of the structural integrity. The AE source location technique is very important to identify the source, such as crack, leak detection. Since the AE waveforms obtained from sensors are very difficult to distinguish the defect signals, therefore, it is necessary to consider the signal analysis of the transient wave-form. In this study, we have divided the region of interest into a set finite elements, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. A new technique for the source location of acoustic emission in fiberboard plates has been studied by introducing Wavelet Transform(WT) do-noising technique. WT is a powerful tool for processing transient signals with temporally varying spectra. If the WT de-noising was employed, we could successfully filter out the errors of source location in fiberboard plates by arrival time difference method. The accuracy of source location appeared to be significantly improved.

Topological Locating of Power Quality Event Source

  • Won Dong-Jun;Moon Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.170-176
    • /
    • 2006
  • This paper proposes a topological locating algorithm to determine the location of the power quality event source. This algorithm makes use of the information on the topology of the monitored network and on the direction of PQ events. As a result, the bus incidence matrix is modified using monitor location and the direction matrix is constructed. With this information, the algorithm determines the suspected locations of the PQ events. To reduce suspicious areas, it utilizes event cause and related equipment. In case of line fault event, it calculates the distance from the monitor to the location of event source. The overall algorithm is applied to the IEEE test feeder and accurately identifies the event source location.

Fabrication of Microcantilever Ultrasound Sensor and Its Application to the Scanning Laser Source Technique

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.459-466
    • /
    • 2005
  • The scanning laser source (SLS) technique has been proposed recently as an effective way to investigate small surface-breaking defects, By monitoring the amplitude and frequency changes of the ultrasound generated as the SLS scans over a defect, the SLS technique has provided enhanced signal-to-noise performance compared to the traditional pitch-catch or pulse-echo ultrasonic methods, An extension of the SLS approach to map defects in microdevices is proposed by bringing both the generator and the receiver to the near-field scattering region of the defects, To facilitate near-field ultrasound measurement, silicon microcantilever probes are fabricated using microfabrication technique and their acoustical characteristics are investigated, Then, both the laser-generated ultrasonic source and the microcantilever probe are used to monitor near-field scattering by a surface-breaking defect.

순간전압강하(Sag)의 상대적 위치 판별 방법 (A method to determine the relative location of voltage sag)

  • 안선주;원동준;정일엽;문승일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.157-159
    • /
    • 2003
  • To improve power quality, it is important to find the location of disturbance source. This paper presents a method to find the location of disturbance source that leads to voltage sag. The relative location of the source is defined and the method to determine the relative location of voltage sag is proposed. With this method, this paper shows that the location of disturbance source can be identified under distributed monitoring system.

  • PDF

Identification of multiple sources in a plate structure using pre-filtering process for reduction of interference wave

  • Lee, S.K.;Moon, Y.S.;Park, J.H.
    • Smart Structures and Systems
    • /
    • 제8권2호
    • /
    • pp.219-237
    • /
    • 2011
  • This paper presents novel research into the source localization of multiple impacts. Source localization technology for single impact loads in a plate structure has been used for health monitoring. Most of research on source localization has been focused only on the localization of single impacts. Overlapping of dispersive waves induced by multiple impacts and reflection of those waves from the edge of the plate make it difficult to localize the sources of multiple impacts using traditional source localization technology. The method solving the overlapping problem and the reflection problem is presented in the paper. The suggested method is based on pre-signal processing technology using band pass filter and optimal filter. Results from numerical simulation and from experimentation are presented, and these verify the capability of the proposed method.

Geo/D/1/1 모형에서의 실시간 원격 추정값의 오차 분석 (Analysis of Real-time Error for Geo/D/1/1 Model)

  • Yutae, Lee
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.135-138
    • /
    • 2023
  • In this paper, we study real-time error in the context of monitoring a binary information source through a delay system. To derive the average real-time error, we model the delay system as a discrete time Geo/D/1/1 queueing model. Using a discrete time three-dimensional Markov chain with finite state space, we analyze the queueing model. We also perform some numerical analysis on various system parameters: state transition probabilities of binary information source; transmission times; and transmission frequencies. When the state changes of the information source are positively correlated and negatively correlated, we investigate the relationship between transmission time and transmission frequency.

생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리 (Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device)

  • 이한욱;이주원;정원근;김성후;이건기
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권6호
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.