• Title/Summary/Keyword: source material

Search Result 2,566, Processing Time 0.029 seconds

Analysis of Amorphous Carbon Hard Mask and Trench Etching Using Hybrid Coupled Plasma Source

  • Park, Kun-Joo;Lee, Kwang-Min;Kim, Min-Sik;Kim, Kee-Hyun;Lee, Weon-Mook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.74-74
    • /
    • 2009
  • The ArF PR mask was. developed to overcome the limit. of sub 40nm patterning technology with KrF PR. But ArF PR difficult to meet the required PR selectivity by thin PR thickness. So need to the multi-stack mask such as amorphous carbon layer (ACL). Generally capacitively coupled plasma (CCP) etcher difficult to make the high density plasma and inductively coupled plasma (ICP) type etcher is more suitable for multi stack mask etching. Hybrid Coupled Plasma source (HCPs) etcher using the 13.56MHz RF power for ICP source and 2MHz and 27.12MHz for bias power was adopted to improve the process capability and controllability of ion density and energy independently. In the study, the oxide trench which has the multi stack layer process was investigated with the HCPs etcher (iGeminus-600 model DMS Corporation). The results were analyzed by scanning electron microscope (SEM) and it was found that etching characteristic of oxide trench profile depend on the multi-stack mask.

  • PDF

Plasma Diagnosis of Ne:Xe, Ne:Ar Mixed Gases by Single Langmuir Probe in Inductively Coupled Plasma Light Source System (ICP 광원 시스템의 Ne:Xe, Ne:Ar 혼합가스의 단일탐침법을 이용한 플라즈마 진단)

  • Choi, Yong-Sung;Lee, Woo-Ki;Moon, Jong-Dae;Lee, Kyung-Sup;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.91-95
    • /
    • 2006
  • In whole world consciousness of environment maintenance have increased very quickly for the end of the 20th century. To use and disuse toxic substances have been controled at the field of industry. Also the field of lighting source belong to environmental control. And in the future the control will be strong. In radiational mechanism of fluorescence lamp mechanism is the worst environmental problem. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem root. In the mercury free lighting source system the Xe gas lamp is one type. And the Ne:Xe mixing gas lamp improvements firing voltage of Xe gas lamp. Purpose and subject of this study are understand, efficiency, ideal of Ne:Xe plasma which mercury free lamp. Before ICP was designed, basic parameters of plasma, which are electron temperature and electron density, were measured and calculated by Langmuir probe data. Property of electron temperature and electron density were confirmed by changing ratio of Ne:Xe.

  • PDF

Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials (서로 다른 소스/드레인 전극물질을 이용한 비정질 In-Ga-Zn-O 박막트랜지스터 성능향상)

  • Kim, Seung-Tae;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.

Alternating Current (AC) Powered LED Lighting Technology with Constant Brightness (빛의 밝기가 일정한 교류 구동 LED 조명기술)

  • Lee, Dong Won;Ahn, Ho-Myoung;Kim, Byungcheul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.466-470
    • /
    • 2022
  • In order to widely disseminate LED lighting, LED lighting technology that directly uses AC commercial power has been recently introduced. AC powered LED lighting technology has a problem in that the light brightness of the LED changes because the voltage applied to the LED and the current flowing through the LED continuously change. In this study, when the LED current is greater than the design current, the current control signal generated by the controller is supplied to the current source to supply only the design current to the LED by increasing the voltage drop at the current source. If it is smaller than the design current, the controller is adjusted so that the current is supplied only to the LED without a voltage drop in the current source. It can be seen that the higher the maximum rectified voltage, the faster the lighting time of the LED light emitting block is, so that the power factor of the LED lighting is improved. The LED lighting technology proposed in this study enables LED lighting with constant light brightness, reduced power consumption, and long lifetime.

Implementation and benchmarking of the local weight window generation function for OpenMC

  • Hu, Yuan;Yan, Sha;Qiu, Yuefeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3803-3810
    • /
    • 2022
  • OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future.

Transient thermo-mechanical response of a functionally graded beam under the effect of a moving heat source

  • Al-Huniti, Naser S.;Alahmad, Sami T.
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.27-43
    • /
    • 2017
  • The transient thermo-mechanical behavior of a simply-supported beam made of a functionally graded material (FGM) under the effect of a moving heat source is investigated. The FGM consists of a ceramic part (on the top), which is the hot side of the beam as the heat source motion takes place along this side, and a metal part (in the bottom), which is considered the cold side. Grading is in the transverse direction, with the properties being temperature-dependent. The main steps of the thermo-elastic modeling included deriving the partial differential equations for the temperatures and deflections in time and space, transforming them into ordinary differential equations using Laplace transformation, and finally using the inverse Laplace transformation to find the solutions. The effects of different parameters on the thermo-mechanical behavior of the beam are investigated, such as the convection coefficient and the heat source intensity and speed. The results show that temperatures, and hence the deflections and stresses increase with less heat convection from the beam surface, higher heat source intensity and low speeds.

Thermal Performance Analysis of Circular Source for OLED Vapor Deposition (OLED 증착용 서큘러소스의 열적성능 해석)

  • Joo, Young-Cheol;Han, Choong-Hwan;Um, Tai-Joon;Lee, Sang-Wook;Kim, Kug-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.39-42
    • /
    • 2007
  • Temperature distribution of the circular heat source was studied by analyzing the heat transfer of the environment of the circular source for OLED. Circular nozzle source was used to fabricate thin organic layer as the organic material in it was heated, vaporized and deposited to the large size panel. A modified heater structure of circular source has been suggested. The results of numerical analysis shows that the modified heater structure can use 15% more powder in a batch than the original heater structure does. Moreover, the modified heater structure can improve the uniformity of organic vapor deposition by controlling the temperature.

  • PDF

Noise-source Analysis of Tactical Vehicle Using Partial Coherence Function (부분기여도함수를 이용한 전술차량 소음원 분석)

  • Park, Sungho;Lee, Kyunghyun;Han, HyungSuk;Jeon, Soohong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.774-780
    • /
    • 2016
  • In this paper noise source and transfer path of tactical vehicle are analyzed with partial coherence function and spectrum analysis. Engine, transmission, structure panel and aerodynamic are main source of cabin noise. To reduce cabin noise, identifying transfer path of sources and analyzing their contribution is important. With modeling of transfer path and partial coherence function, transfer path and principal noise source can be identified. Engine/transmission and structural resonance are principal source of low frequency noise and by adding stiffener and sound absorbing material, resonance of vibration and inflow air problem can be solved.

Generation characteristics of unit cell for MCFC (MCFC 의 단위전지 발전특성)

  • 김귀열;엄승욱;문성인;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.224-226
    • /
    • 1995
  • Molten Carbonate Fuel Cell are expected as an electric and thermal power source of the urban cogenerating system because MCFC have higher electric power efficiency and better thermal power quality. This study has examined generation characteristics of unit cell for MCFC.

  • PDF

Variation of Rare Earth Element Patterns during Rock Weathering and Ceramic Processes: A Preliminary Study for Application in Soil Chemistry and Archaeology (암석의 풍화과정 및 도자기 제조과정에 따른 희토류원소 분포도의 변화: 토양화학 및 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Kim, Kun-Han;Kim, Jin-Kwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-143
    • /
    • 2008
  • On the basis of chemical composition of granite, gneiss and their weathering products, in this paper, rare earth elements (REEs) was estimated as tracer for clarifying a geochemical variance of earth surface material during weathering process. The chemical composition of clay, clay ware and pottery also were measured for testifying usefulness of REE geochemistry in clarifying the source material of pottery. It was observed that there was no systematic variation of chemical composition among source rock, weathered rock and soil during weathering process. The chemical composition of clay, clay ware and pottery also did not show systematic variation by baking pottery. However, PAAS (Post Archean Australian Shale)-normalized REE patterns of rock-weathered rock-soil and clay-clay ware-pottery are similar regardless of weathering process or ceramic art. Our results confirm that REE geochemistry is powerful tool for clarifying the source materials of surface sediment or archaeological ceramic products.