• 제목/요약/키워드: source current density

검색결과 309건 처리시간 0.03초

Structural and component characterization of the B4C neutron conversion layer deposited by magnetron sputtering

  • Jingtao Zhu;Yang Liu;Jianrong Zhou;Zehua Yang;Hangyu Zhu;Xiaojuan Zhou;Jinhao Tan;Mingqi Cui;Zhijia Sun
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3121-3125
    • /
    • 2023
  • Neutron conversion detectors that use 10B-enriched boron carbide are feasible alternatives to 3He-based detectors. We prepared boron carbide films at micron-scale thickness using direct-current magnetron sputtering. The structural characteristics of natural B4C films, including density, roughness, crystallization, and purity, were analyzed using grazing incidence X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and scanning electron microscopy. A beam profile test was conducted to verify the practicality of the 10B-enriched B4C neutron conversion layer. A clear profile indicated the high quality of the neutron conversion of the boron carbide layer.

BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감 (Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution)

  • 김사무엘;정승호;류세현;권병일
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

FEMLAB를 이용한 직접메탄올 연료전지(DMFC) 지배방정식의 전산모사 (Simulation of governing equations for direct methanol fuel cell(DMFC) using FEMLAB)

  • 박태현;김인호
    • 청정기술
    • /
    • 제10권1호
    • /
    • pp.9-17
    • /
    • 2004
  • 수소이온 교환 막을 가진 직접 메탄올 연료전지(DMFC)는 기존의 전력원에 비해 많은 장점을 가지고 있다. 그러나 직접메탄올 연료전지는 메탄올 crossover, 음극의 과전압, limiting current density 등 해결해야할 문제들이 있다. 직접메탄올 연료전지의 물리화학적 현상은 여러 편미분방정식들로 표현 가능하다. 본 연구에서는 이러한 편미분방정식을 풀기위해 FEMLAB를 이용하였다. FEMLAB은 PDE를 기초로 문제를 정의하고 1, 2, 3D, 비선형, 그리고 시간의 함수 형태의 편미분방정식들로 정의된 시스템을 전산모사하기위해 디자인되었다. 시스템의 메탄올 농도 분포를 알아보기 위해 촉매층에서 전기화학적반응식으로 Tafel식을 적용하여 전산모사를 수행하였다. 전산모사를 통해 음극의 촉매층에서 메탄올 농도의 급격한 감소는 직접 메탄올 연료전지의 성능저해의 요인임을 확인하였다.

  • PDF

Measurement of electron density of atmospheric pressure Ar plasma jet by using Michelson interferometer

  • Lim, Jun-Sup;Hong, Young June;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.195.1-195.1
    • /
    • 2016
  • Currently, as Plasma application is expanded to the industrial and medical industrial, low temperature plasma applications became important. Especially in medical and biology, many researchers have studied about generated radical species in atmospheric pressure low temperature plasma directly adapted to human body. Therefore, so measurement their plasma parameter is very important work and is widely studied all around world. One of the plasma parameters is electron density and it is closely relative to radical production through the plasma source. some kinds of method to measuring the electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods have very expensive cost and complex configuration to composed of experiment system. We selected Michelson interferometer system which is very cheap and simple to setting up, so we tried to measuring electron density by laser interferometer with laser beam chopping module for measurement of temporal phase difference in plasma jet. To measuring electron density at atmospheric pressure Ar plasma jet, we obtained the temporal phase shift signal of interferometer. Phase difference of interferometer can occur because of change by refractive index of electron density in plasma jet. The electron density was able to estimate with this phase difference values by using physical formula about refractive index change of external electromagnetic wave in plasma. Our guiding laser used Helium-Neon laser of the centered wavelength of 632 nm. We installed chopper module which can make a 4kHz pulse laser signal at the laser front side. In this experiment, we obtained more exact synchronized phase difference between with and without plasma jet than reported data at last year. Especially, we found the phase difference between time range of discharge current. Electron density is changed from Townsend discharge's electron bombardment, so we observed the phase difference phenomenon and calculated the temporal electron density by using phase shift. In our result, we suggest that the electron density have approximately range between 1014~ 1015 cm-3 in atmospheric pressure Ar plasma jet.

  • PDF

목탄이 첨가된 $MgB_2$의 초전도 성질에 미치는 열처리 온도의 영향 (Effect of Annealing Temperature on Superconducting Properties of Charcoal Doped $MgB_2$)

  • 김남규;탄카이신;전병혁;박해웅;주진호;김찬중
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.80-84
    • /
    • 2007
  • Charcoal was used as a carbon source for improving the critical current density of $MgB_2$ and the effect of annealing temperature on the $J_c$ of $MgB_2$ was investigated. The charcoal powder used in this study was $1{\sim}2$ microns in size and was prepared by wet attrition milling. $MgB_2$ bulk samples with a nominal composition of $Mg(B_{0.95}C_{0.05})_2$ were prepared by in situ process of Mg and B powders. The powder mixture was uniaxially compacted into pellets and heat treated at temperatures of $650^{\circ}C\;-\;1000^{\circ}C$ for 30 minutes in flowing Ar gas. It was found that superconducting transition temperature of $Mg(B_{0.95}C_{0.05})_2$ decreased by charcoal additions which indicates the carbon substitution for boron site. $J_c$ of $Mg(B_{0.95}C_{0.05})_2$ was lower than that of the undoped $MgB_2$ at the magnetic fields smaller than 4 Tesla, while it was higher than that of the undoped sample especially at the magnetic field higher than 4 T. High temperature annealing seems to be effective in increasing $J_c$ due to the enhanced carbon diffusion into boron sites.

  • PDF

Torque Predictive Control for Permanent Magnet Synchronous Motor Drives Using Indirect Matrix Converter

  • Bak, Yeongsu;Jang, Yun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1536-1543
    • /
    • 2019
  • This paper presents an improved torque predictive control (TPC) for permanent magnet synchronous motors (PMSMs) using an indirect matrix converter (IMC). The IMC has characteristics such as a high power density and sinusoidal waveforms of the input-output currents. Additionally, this configuration does not have any DC-link capacitors. Due to these advantages of the IMC, it is used in various application field such as electric vehicles and railway cars. Recently, research on various torque control methods for PMSM drives using an IMC is being actively pursued. In this paper, an improved TPC method for PMSM drives using an IMC is proposed. In the improved TPC method, the magnitudes of the voltage vectors applied to control the torque and flux of the PMSM are adjusted depending on the PMSM torque control such as the steady state and transient response. Therefore, it is able to reduce the ripples of the output current and torque in the low-speed and high-speed load ranges. Additionally, the improved TPC can improve the dynamic torque response when compared with the conventional TPC. The effectiveness of the improved TPC method is verified by experimental results.

중·대형 디스플레이용 건식 식각(ICP Dry etcher) 설비의 플라스마 균일도 제어 기술 (Plasma Uniformity Control Technology for Dry Etching (ICP Dry etcher) Equipment for Medium and Large Displays)

  • 홍성재;전홍구;양호식
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.125-129
    • /
    • 2022
  • The current display technology tends to be highly integrated with high resolution, the element size is gradually downsized, and the structure becomes complicated. Inductively coupled plasma (ICP) dry etcher of various types of etching equipment is a structure that places a large multi-divisional antenna source on the top lid, passes current to the Antenna, and generates plasma using the induced magnetic field generated at this time. However, in the case of a device of a large area size, a support that can withstand a load structurally is necessary, and when these support portions are applied, arrangement of antenna becomes difficult, which causes reduction in uniformity. As described above, the development of antenna source of a large area having a uniform plasma density on the whole surface is difficult to restrict hardware (H/W). As a solution to this problem, we confirmed the change in uniformity of plasma by applying two kinds of specific shape faraday shield(FICP) to the lower part of the large area upper lid antenna of 6 and 8th more than that generation size. In this thesis, we verify the faraday shield effect which can improve plasma uniformity control of ICP dry etcher equipment applied to medium and large displays.

Stability Analysis of an Accelerator-Driven Fluid-Fueled Subcritical Reactor System

  • Kim, Do-Sam;Cho, Nam-Zin
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.90-95
    • /
    • 1997
  • In this work, linear dynamics of a circulating fluid-fueled subcritical reactor system with temperature feedback and external neutron source was modeled and examined. In a circulating fluid-fuel system, the stable region is slightly moved by a circulation fluid effect. The effects of subcriticality and temperature feedback coefficient on the reactor stability were tested by calculating frequency response of neutron density originated from reactivity perturbation or external source oscillation of system. The amplitude transfer function has a different shape near subcritical region due to the exponential term in the transfer function. The results of the study show that at a slightly subcritical region, low frequency oscillation in accelerator current or reactivity can be amplified depending on the temperature feedback. However, as the subcriticality increases, the oscillation becomes negligible regardless of the magnitude of the temperature feedback coefficient.

  • PDF

상압에서 제조한 포토캐소드의 전자방출 특성에 관한 연구 (A Study on Electron Emission Characteristics of Photocathode Formed Under Condition in N2 Atmosphere)

  • 정효수
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.312-316
    • /
    • 2014
  • Photoemission is a process in which photons are converted into free electrons. Photocathodes are the typical materials for the process. They emit electrons when a light is irradiated upon. The traditional method of manufacturing photocathodes is complicated, requires specialized equipment, and is limited very small sized samples. $Cs_3Sb$ photocathode was formed on a substrate in $N_2$ atmospheric conditions. The photocathode formation was a gas phase reaction with the substrate. Vacuum devices were made to test electron emission characteristics of the formed photocathode. Visible light of wavelength 475 nm was used for the primary light source. The results showed high current density and long term stability of the photoelectron emission.

자기정렬 이중 리쎄스 공정에 의한 전력 MESFET 소자의 제작 (Power MESFETs Fabricated using a Self-Aligned and Double Recessed Gate Process)

  • 이종람;김도진;윤광준;이성재;강진영;이용탁
    • 전자공학회논문지A
    • /
    • 제29A권2호
    • /
    • pp.77-79
    • /
    • 1992
  • We propose a self-aligned and double recessed technique for GaAs power MESFETs application. The gate length and the wide recess width are defined by a selective removal of the SiN layer using reactive ion etching(RIE) while the depth of the channel is defined by chemical etching of GaAs layers. The threshold voltages and the saturation drain voltage could be sucessfully controlled using this technique. The lateral-etched distance increases with the dry etching time and the source-drain breakdown voltage of MESFET increases up to about 30V at a pinch-off condition. The electrical characteristics of a MESFET with a gate length of 2 x10S0-6Tm and a source-gate spacing of 33 x10S0-6Tm show maximum transconductance of 120 mS/mm and saturation drain current density of 170-190mA/mm at a gate voltage of 0.8V.

  • PDF