• Title/Summary/Keyword: source basin

Search Result 367, Processing Time 0.025 seconds

Origin of Organic Matter and Geochemical Variation of Upper Quaternary Sediments from the Ulleung Basin (울릉분지 상부 제4기 퇴적물의 유기물 기원 및 지화학적 분포)

  • Kim, Ji-Hoon;Park, Myong-Ho;Ryu, Byong-Jae;Lee, Young-Joo;Oh, Jae-Ho;Cheong, Tae-Jin;Chang, Ho-Wan
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.605-622
    • /
    • 2007
  • Elemental, Rock-Eval pyrolysis and isotopic analysis of the core sediments from the northwestern and eastern Ulleung Basin of the East were carried out to identify their geochemical characteristics, spatial and vertical variation and origin of organic matter in Upper Quaternary sediments from the northwestern and eastern Ulleung Basin of the East Sea. TOC, m and TS did not show spatial variation between the sampling locations whereas they showed systematic vertical variation associated with MIS stages related to the sea-level change of the East Sea. It is suggested that these past changes of sea-level influenced the sedimentary depositional environments and/or diagenesis which resulted the patterns observed in this study. Based on the results of TOC/N, TS/TOC, ${\delta}^{13}C_{org}\;and\;{\delta}^{15}N_{org}$ analysis, organic matters in the study area appears to be predominantly originated from the marine algae rather than land plant and deposited under normal marine oxic condition during MIS I and MIS III period, and under euxinic/anoxic condition during MIS II period. TOC/N, ${\delta}^{13}C_{org}\;and\;{\delta}^{15}N_{org}$ have a relatively constant value irrespective of MIS stages, implying that the organic matter source does not change by the sea-level fluctuations. However, the results of Rock-Eval pyrolysis indicates that the organic matter is in immature stage and originated from land-plant (Type III), locating in the immature stage land plant (Type III). Similar differences were reported from other areas such as the Atlantic Ocean, Iberia Abyssal Plain, Mediterranean Sea, suggesting that Rock-Eval method does not exactly reflect the characteristic of immature organic matters. Accordingly, the application of Rock-Eval pyrolysis for delineating the source of immature organic matters should be approached with caution and all other geochemical proxies should be considered altogether at the same time.

Analysis of Nonpoint source Reduction at Andong Area Considering Changes in CN (CN의 변화에 따른 안동시 물순환 선도도시 조성계획의 비점오염부하 저감효과 분석)

  • Kwon, Heongak;Jung, Kangyoung;Kim, Shin;Shin, Sukho;Ahn, Jungmin;Kim, Gyeonghoon
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • Andong belongs to the Nakdong River Basin, Nakdong River is flowing through the city, including Andong dam and Imha dam. The runoff due to provincial transfer and impervious area has been increasing by urbanization increases and nonpoint source loads. In this study, we evaluate the runoff and nonpoint pollution loads in accordance with the development targeted at selected urban water cycle leading to Andong city. Andong city leading to the water cycle plan to evaluate the directly runoff and BOD, T-N and T-P nonpoint pollutant loads using the CN into account the temporal and spatial changes. Evaluation, direct runoff per year is 10.41 % if the green roof and a water permeable pavement replacement, water cycle parks and streets compositions, City impermeable layer improvements to be business including four kinds of scenario is applied to both the development and the BOD non-point pollutant loads 20.56%, T-N 9.55% and T-P pollution and nonpoint loads was investigated to be reduced 14.29%. Four kinds of low lapse rate of the development scenario of the highest thing urban impervious surface was investigated by improving business development prior year annual direct runoff is 6.25 %, BOD nonpoint pollution loads are 11.84%, T-N nonpoint pollution loads are 4.46 % and T-P was investigated by reducing pollutant loads to be 10.20%.

Pollutants Removal Efficiency of Rainfall-runoff from Dense Highland Field Areas in Multistage Sedimentation Basins - Focused on Jaun Area in Upstream Watershed of Lake Soyang - (고랭지 밭 밀집지역 다단계 침사지의 강우-유출 오염물질 제거 효율 - 소양호 상류의 자운지구를 중심으로 -)

  • Cho, Jae Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.170-180
    • /
    • 2018
  • Highland fields are concentrated in the Jaun area of Hongcheong-gun, a large amount of sediments are discharged from the highland fields. The sediment runoff affect the turbidity and water quality of the Soyang Lake, furthermore adversely affect water supply source of the capital region. There are several kinds of BMPs(Best management practices) to decrease the sedimentrunoff from the highland fields. Although construction cost of multistage sedimentation basins is very high, there is no actual survey data for the removal efficiency of suspended sediments and water quality in our country. In this study, stormwaterinflow and outflow of the multistage sedimentation basins were surveyed, and the removal efficiency of nonpoint source pollutants were analyzed. The stormwater survey results fortwo rainfall events show thatremoval efficiencies of SS, BOD and TP loads in the multistage sedimentation basins are 35%~62%, 24%~55%, 35%~58%, respectively. Although the measured efficiencies of the basins were lower than the theoretical efficiency, the proper operation and management can improve the removal rate of the basins. Turbid water problem in the upper parts of the Soyang River can be managed effectively through the additional installation of multistage sedimentation basins.

Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan River using EFDC (EFDC를 이용한 영산강 주요 오염 부하 저감에 따른 승촌보 및 죽산보 녹조 현상 개선 효과 분석)

  • Kim, Jinsoo;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.369-381
    • /
    • 2020
  • In this paper, observed water quality, algal blooms and flow rates in the Yeongsan River and its boundaries including 8 tributaries and 2 wastewater treatment plants for two years of 2018-2019 were analyzed. It seems effects of non-point source load inputs from basin areas to the river may be significant though the field data availability was limited. The EFDC model was calibrated against data collected from 6 water level monitoring stations and 6 water quality monitoring stations, respectively, in the study area. Water quality improvement scenarios were developed assuming 50% and 75% reductions of major pollution sources including treatment plants and tributaries. The developed scenarios were applied to the EFDC model to estimate effects on algal bloom occurrences in the Seungchon weir and Juksan weir. Improvement of the effluent of Gwangju 1 WWTP by 75% did not show any effect on algal blooms for two weir locations. The major tributary affecting algal blooms in the Seungchon weir was the Hwangryong River. The Jisuk stream was found as the most important tributary for the Juksan weir followed by the effect of the Hwangryong River. Though it seems other scattered small nonpoint source load input to the Yeongsan river also seem to be important, it was not possible to reflect their effects appropriately due to field data availability.

Contribution of Non-Point Pollution to Water Quality and Runoff Characteristics from Agricultural Area of the Upstream Watersheds of Lake Chinyang

  • Lee, Chun-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.259-267
    • /
    • 2013
  • In this study, non-point source(NPS) contribution was investigated based on flow rates and water qualities of streams into the lake during rainfall events. Event mean concentration(EMC) and the pollution loads were calculated to establish a database for NPS control measurement in the survey area, and so on. The runoff characteristics of NPS were investigated and estimated on the basis of the ratio of an agricultural to forest area in the stream of sub-catch basin during rainfall events. Non-point source pollution loads were also calculated to establish a database for NPS control measure in the upstream lake Chinyang. At a rainfall event, BOD concentrations rise sharply at the early peak time of runoff, however, peaks of TSS concentration were observed at the similar time of peak flow. This was a phenomenon shown at the watersheds caused by forest and geological types. The discharged EMC range was 2.9-4.8 mg/L in terms of BOD. The discharged EMC range was 6.2-8.2 mg/L in terms of SS. The discharged EMCs of T-N and T-P were 1.4-2.5 mg/L and 0.059-0.233 mg/L, respectively. Total BOD loading rate through the 3 tributaries to the lake Chinyang was 1,136 kg/d during dry weather. The upper watershed area of the Nam-river dam in this study was divided into 14 catchment basins based on the Korean guideline for total maximum daily load(TMDL) of water quality pollutants. The higher the agricultural land-use ratio, the more NPS loading rate discharged, but the more occupied a forest area, the lower more NPS loading rate discharged. In an agricultural land-use area more than 20%, the increase of NPS loadings might be dramatically diffused by increasing the integrated complex-use like vinyl-house facilities and fertilizer use etc. according to the effective land-use utilization. The NPS loading rates were BOD 0.3 $kg/ha{\cdot}day$, SS 0.21 $kg/ha{\cdot}day$, TN 0.02 $kg/ha{\cdot}day$, TP 0.005 $kg/ha{\cdot}day$ under less than 10% agricultural land-use. In agricultural land-use of 20%-50%, these values were investigated in the range of 0.32 $kg/ha{\cdot}day$-0.73 $kg/ha{\cdot}day$ for BOD, 0.92 $kg/ha{\cdot}day$-3.32 $kg/ha{\cdot}day$ for SS, 0.70 $kg/ha{\cdot}day$-0.90 $kg/ha{\cdot}day$ TN, 0.03 $kg/ha{\cdot}day$-0.044 $kg/ha{\cdot}day$ for TP.

Evaluation of Non-point source Vulnerable Areas In West Nakdong River Watershed Using TOPSIS (TOPSIS를 이용한 서낙동강 유역 비점오염 취약지역 평가 연구)

  • KAL, Byung-Seok;PARK, Jae-Beom;KIM, Ye-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.26-39
    • /
    • 2021
  • This study investigated the characteristics of the watershed and pollutants in the Seonakdong River basin in the lower stream of the Nakdong River Water System, and evaluated the areas vulnerable to nonpoint pollution by subwatershed according to the TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution) method. The selection method consists of selection of evaluation factors, calculation of weights and selection of areas vulnerable to non-point pollution through evaluation factors and weights. The entropy method was used as the weight calculation method and TOPSIS, a multi-criteria decision making(MCDM) method was used as the evaluation method. Indicator data were collected as of 2018, and national pollution source survey data and national statistics were used. Most of the vulnerable watersheds were highly urbanized had a large number of residents and were evaluated as having a large land area among industrial facilities and site area rate. Through this study, it is necessary to approach a variety of weighting methodologies to assess the vulnerability of non-point pollution with high reliability, and scientific analysis of the factors that affect non-point pollution sources and consideration of the effects are necessary.

2-D/3-D Seismic Data Acquisition and Quality Control for Gas Hydrate Exploration in the Ulleung Basin (울릉분지 가스하이드레이트 2/3차원 탄성파 탐사자료 취득 및 품질관리)

  • Koo, Nam-Hyung;Kim, Won-Sik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Yoo, Dong-Geun;Lee, Ho-Young;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • To identify the potential area of gas hydrate in the Ulleung Basin, 2-D and 3-D seismic surveys using R/V Tamhae II were conducted in 2005 and 2006. Seismic survey equipment consisted of navigation system, recording system, streamer cable and air-gun source. For reliable velocity analysis in a deep sea area where water depths are mostly greater than 1,000 m and the target depth is up to about 500 msec interval below the seafloor, 3-km-long streamer and 1,035 $in^3$ tuned air-gun array were used. During the survey, a suite of quality control operations including source signature analysis, 2-D brute stack, RMS noise analysis and FK analysis were performed. The source signature was calculated to verify its conformity to quality specification and the gun dropout test was carried out to examine signature changes due to a single air gun's failure. From the online quality analysis, we could conclude that the overall data quality was very good even though some seismic data were affected by swell noise, parity error, spike noise and current rip noise. Especially, by checking the result of data quality enhancement using FK filtering and missing trace restoration technique for the 3-D seismic data inevitably contaminated with current rip noises, the acquired data were accepted and the field survey could be conducted continuously. Even in survey areas where the acquired data would be unsuitable for quality specification, the marine seismic survey efficiency could be improved by showing the possibility of noise suppression through onboard data processing.

Origin and Reservoir Types of Abiotic Native Hydrogen in Continental Lithosphere (대륙 암석권에서 무기 자연 수소의 성인과 부존 형태)

  • Kim, Hyeong Soo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.313-331
    • /
    • 2022
  • Natural or native abiotic molecular hydrogen (H2) is a major component in natural gas, however yet its importance in the global energy sector's usage as clean and renewable energy is underestimated. Here we review the occurrence and geological settings of native hydrogen to demonstrate the much widesprease H2 occurrence in nature by comparison with previous estimations. Three main types of source rocks have been identified: (1) ultramafic rocks; (2) cratons comprising iron (Fe2+)-rich rocks; and (3) uranium-rich rocks. The rocks are closely associated with Precambrian crystalline basement and serpentinized ultramafic rocks from ophiolite and peridotite either at mid-ocean ridges or within continental margin(Zgonnik, 2020). Inorganic geological processes producing H2 in the source rocks include (a) the reduction of water during the oxidation of Fe2+ in minerals (e.g., olivine), (b) water splitting due to radioactive decay, (c) degassing of magma at low pressure, and (d) the reaction of water with surface radicals during mechanical breaking (e.g., fault) of silicate rocks. Native hydrogen are found as a free gas (51%), fluid inclusions in various rock types (29%), and dissolved gas in underground water (20%) (Zgonnik, 2020). Although research on H2 has not yet been carried out in Korea, the potential H2 reservoirs in the Gyeongsang Basin are highly probable based on geological and geochemical characteristics including occurrence of ultramafic rocks, inter-bedded basaltic layers and iron-copper deposits within thick sedimentary basin and igneous activities at an active continental margin during the Permian-Paleogene. The native hydrogen is expected to be clean and renewable energy source in the near future. Therefore it is clear that the origin and exploration of the native hydrogen, not yet been revealed by an integrated studies of rock-fluid interaction studies, are a field of special interest, regardless of the presence of economic native hydrogen reservoirs in Korea.

Unit Mass Estimation and Analysis from Fiber Dyeing and Finishing Facility Nearby Nakdong River Basin (낙동강수계에서 섬유염색 및 가공 업체에 대한 공정별 원단위산정 및 분석)

  • Gu, Jung-Eun;Nah, Dong-Hoon;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.765-774
    • /
    • 2009
  • Fiber Dyeing and Finishing facility has been recognized as an important pollution source due to its consumption of large volumes of water and chemicals. Unit mass discharge for the conventional water quality parameters such as flowrate, SS, $BOD_5,\;COD_{Mn},\;COD_{Cr}$, TN, TP were estimated. To represent the respective industries, three companies were carefully selected based on its manufacturing goods, flowrate and location at various unit operations and processes. More than 90% of decrease in unit mass estimation between influent and effluent of BOD was observed. But the values themselves were similar to those of Fiber Manufacturing facility due to the high loadings of organic matter. Biodegradability of influent was almost three times higher than that of effluent. Unit mass discharge estimations of unit process (estimated in this study) based on space, products and raw material were similar to those of composite process (estimated by National Institute of Environmental Research), while big difference was observed in the other factors. Unit mass discharge factors calculated in this study can be used as the reference for the estimation of water pollution loading costs in Nakdong river basin. For the effective water pollution control and management, it is essential to characterize the various types of water quality parameters from the effluents of individual industrial wastewater treatment plants.

Drilling Gas Hydrate at Hydrate Ridge, ODP Leg 204

  • Lee Young-Joo;Ryu Byong-Jae;Kim Ji-Hoon;Lee Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.663-666
    • /
    • 2005
  • Gas hydrates are ice-like compounds that form at the low temperature and high pressure conditions common in shallow marine sediments at water depths greater than 300-500 m when concentrations of methane and other hydrocarbon gases exceed saturation. Estimates of the total mass of methane carbon that resides in this reservoir vary widely. While there is general agreement that gas hydrate is a significant component of the global near-surface carbon budget, there is considerable controversy about whether it has the potential to be a major source of fossil fuel in the future and whether periods of global climate change in the past can be attributed to destabilization of this reservoir. Also essentially unknown is the interaction between gas hydrate and the subsurface biosphere. ODP Leg 204 was designed to address these questions by determining the distribution, amount and rate of formation of gas hydrate within an accretionary ridge and adjacent basin and the sources of gas for forming hydrate. Additional objectives included identification of geologic proxies for past gas hydrate occurrence and calibration of remote sensing techniques to quantify the in situ amount of gas hydrate that can be used to improve estimates where no boreholes exist. Leg 204 also provided an opportunity to test several new techniques for sampling, preserving and measuring gas hydrates. During ODP Leg 204, nine sites were drilled and cored on southern Hydrate Ridge, a topographic high in the accretionary complex of the Cascadia subduction zone, located approximately 80km west of Newport, Oregon. Previous studies of southern Hydrate Ridge had documented the presence of seafloor gas vents, outcrops of massive gas hydrate, and a pinnacle' of authigenic carbonate near the summit. Deep-towed sidescan data show an approximately $300\times500m$ area of relatively high acoustic backscatter that indicates the extent of seafloor venting. Elsewhere on southern Hydrate Ridge, the seafloor is covered with low reflectivity sediment, but the presence of a regional bottom-simulating seismic reflection (BSR) suggests that gas hydrate is widespread. The sites that were drilled and cored during ODP Leg 204 can be grouped into three end-member environments basedon the seismic data. Sites 1244 through 1247 characterize the flanks of southern Hydrate Ridge. Sites 1248-1250 characterize the summit in the region of active seafloor venting. Sites 1251 and 1252 characterize the slope basin east of Hydrate Ridge, which is a region of rapid sedimentation, in contrast to the erosional environment of Hydrate Ridge. Site 1252 was located on the flank of a secondary anticline and is the only site where no BSR is observed.

  • PDF