• Title/Summary/Keyword: source basin

Search Result 367, Processing Time 0.025 seconds

Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin (낙동강 유역의 수질관리를 위한 유역모델링 적용 연구)

  • Jang, Jae-Ho;Ahn, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

ASSESSMENT AND CONTROL OF TOTAL NUTRIENT LOADS IN WATERSHED AND STREAM NETWORK IN SOUTH-WEST TEXAS

  • Lee, Ju-Young;Choi, Jae-Young
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, the population growth and agricultural development are rapidly undergoing in the South-West Texas. The junction of three river basins such as Lavaca river basin, Colorado-Lavaca Coastal basin and Lavaca-Guadalupe Coastal basin, are interesting for non-point and point source pollutant modeling: Especially, the 2 basins are an intensively agricultural region (Colorado-Lavaca Coastal/Lavaca-Guadalupe Coastal basins) and several cities are rapidly extended. In case of the Lavaca river basin, there are many range land. Several habitat types wide-spread over three relatively larger basins and five wastewater discharge regions are located in there. There are different hazardous substances which have been released. Total nutrient loads are composed of land surface load and river load as Non-point source and discharge from wastewater facilities as point source. In 3 basins region, where point and non-point sources of poll Jtion may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to how to assess and control the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern as non-point source with water quality related to pesticides, fertilizer, and nutrients and as point source with wasterwater discharge from cities. The GIS technique has been developed to aid in the point and non-point source analysis of impacts to natural resource within watershed. This project shows the losses in $kg/km^2/year$ of BOD (Biological Oxygen Demand), TN (Total Nitrogen) and TP (Total Phosphorus) in the runoff from the surface of 3 basins. In the next paper, sediment contamination will show how to evaluate in Estuarine habitats of these downstream.

  • PDF

Estimation of Nonpoint Source Pollutant Loads of Juam-Dam Basin Based on the Classification of Satellite Imagery (위성영상 분류 기반 주암댐 유역 비점오염부하량 평가)

  • Lee, Geun-Sang;Kim, Tae-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • The agricultural area was classified into dry and paddy fields in this study using the near-infrared band of Landsat TM to extract land cover classes that need to the application of Expected Mean Concentration (EMC) in nonpoint source works. The accuracy of image classification of the land cover map from Landsat TM image showed 83.61% and 78.41% respectively by comparing with the large and middle scale land cover map of Ministry of Environment. As the result of Soil Conservation Service (SCS) Curve Number (CN) using the land cover map from image classification, Dongbok dam and Dongbok stream basin were analyzed high. Also Geymbaek water-gage and Bosunggang upstream basin showed high in the analysis of EMC of BOD, TN, TP by basin. And also Geymbaek water-gage and Bosunggang upstream basin showed high in the analysis of non-point source through coupling with direct runoff. Therefore these basins were selected with the main area for the management of nonpoint source.

Analysis of bifurcation characteristics for the Seolmacheon experimental catchment based on variable scale of source basin (수원 유역의 변동성 규모를 기반으로 한 설마천 시험유역의 분기 특성 해석)

  • Kim, Joo-Cheol;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.289-299
    • /
    • 2021
  • This study analyzes bifurcation characteristics of the Seolmacheon experimental catchment by extracting the shape variation of channel network due to variable scale of source basin or threshold area. As the area of source basin decreases, a bifurcation process of channel network occurs within the basin of interest, resulting in the elongation of channel network (increase of total channel length) as well as the expansion of channel network (increase of the source number). In the former case, the elongation of channel reaches overwhelms the generation of sources, whereas, in the latter case, the drainage path network tends to fulfill the inner space of the basin of interest reflecting the opposite trend. Therefore, scale invariance of natural channel network could be expressed to be a balanced geomorphologic feature between the elongation of channel network and the expansion of channel network due to decrease of source basin scale. The bifurcation structure of the Seolmacheon experimental catchment can be characterized by the coexistence of the elongation and scale invariance of channel network, and thus a further study is required to find out which factor is more crucial to rainfall transformation into runoff.

Modeling of Earthquake Ground Motion in a Small-Scale Basin (소규모 분지에서의 지진 지반운동 모델링)

  • Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.92-101
    • /
    • 2012
  • Three-dimensional finite-difference simulation in a small-scale half-sphere basin with planar free-surface is performed for an arbitrary shear-dislocation point source. A new scheme to deal with free-surface boundary condition is presented. Then basin parameters are examined to understand main characteristics on ground-motion response in the basin. To analyze the frequency content of ground motion in the basin, spectral amplitudes are compared with each other for four sites inside and outside the basin. Also particle motions for those sites are examined to find which kind of wave plays a dominant role in ground-motion response. The results show that seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to constructive interference of the direct Swave with basin-edge induced surface waves. Also, ground-motion amplification over the deepest part of the basin is relatively lower than that above shallow basin edge. In the small-scale basin with relatively simple bedrock interface, therefore, the ground-motion amplification may be more related to the source azimuth or direction of the incident waves into the basin rather than depth of it.

Analysis of Relationship Between Water Quality Parameters with Land Use in Yeongsan River Basin (영산강 수계의 토지이용과 수질항목 간의 상관관계 분석)

  • Park, Jinhwan;Moon, Myungjin;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • The purpose of this study is to provide a base line data to improve the water quality in the Yeongsan River basin. As the major factor that affects the water quality of Yeongsan River is nonpoint pollution source, in order to find a resolve to improve the quality, a study was conducted to identify the correlation between the stream water quality and that of the land use. The study showed that the concentration of the contents in the water from the agricultural land environment was found to be higher as oppose to that found in the content of the water from the forest land. As a result, it can be deducted that agricultural land deteriorates water quality whereas that of the forest land is of much better quality. Therefore, it is highly recommended to take advanced improved care of agricultural land close to a water source to improve the quality of Yeongsan River basin.

The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea

  • Kwak, Sunggue;Yun, Zuwhan
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.345-351
    • /
    • 2020
  • Eutrophication of surface waters is commonly caused by excessive inputs of nutrients such as nitrogen and phosphorus. Nakdong River basin was chosen as the study area to investigate the effect of point and non-point source pollution of nitrogen on eutrophication in water body. Non-point source inputs of nitrogen accounted for approximately 84% in the total nitrogen input of the upper Nakdong river watershed, which mainly consists of agricultural land and forests. However, point source inputs of nitrogen accounted for 58~85% in the total nitrogen input of the middle and lower watersheds, including urban area. Therefore, for watershed near urban area, control of point source inputs of nitrogen may be an optimal method to control eutrophication. In this respect, the enforcing reduction of nitrogen in the final effluent of wastewater treatment facilities is needed. On the other hand, to enact more stringent nitrogen regulations, the LOT (limit of technology) and environmental impact should be considered. In this study nitrogen data were analyzed to propose new nitrogen regulations.

Assessment of the Wetland Soil Development of Constructed Wetlands using Soil Properties of a Reference Wetland (시험유역 운영을 통한 강우-유출수의 비점오염물질 유출특성 분석)

  • Lee, Joo Heon;Kim, Chang Joo;Park, Min Jae;Shin, Jung Soo;Jang, Ho Won
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.181-192
    • /
    • 2012
  • Dae Dong Stream basin has been selected and operated as a representative experimental basin of UNESCO IHP since year 2007. It is located at Daejeon Metropolitan city, Korea and hydrologic data such as precipitation, runoff, and water quality have been being collected and provided after establishing the monitoring plan as an experimental basin for city/disaster prevention. In this study, runoff characteristics for non-point sources of rainfall-runoff process from urban stream basins were analyzed using the flow and water quality data measured during the year 2011. As an operation result for the test subjected basin, rating curves at Panam Bridge and at Chulgap Bridge were prepared, and to compare runoff characteristics of non-point source by precipitation, by estimating the Event Mean Concentration(EMC) for 10 water quality items, runoff characteristics of non-point source per different observation points as per the precipitation, antecedent rainfall, and land utilization status were analyzed.

Water Environment Characteristics and Efficient Basin Management of Song Stream (송천유역의 수질환경특성 및 효율적 유역관리)

  • 허인량;신용건;이건호;최지용;김영진;정의호;정명선
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.51-59
    • /
    • 2001
  • Song stream is located in the upstream of the Namhan River. Normal times, the stream flows down to the east sea through the drainage pipe but at rainy season, it flows to the Namhan River. There are large stock farm, leisure town and cultivated land in this basin. The pollutants from these contamination source cause eutrophication at lake Doam and deterioration of water quality in namdai stream. In this case, this study was carried out to evaluate water quality and environmental capacity as well as economical efficiency of each industry. The basin shape factor of subject stream was 0.315, slope is higher than usual basin. The BOD, T-N and T-P productive contamination loading from each contamination source was 2,690, 974 and 194 kg/day, respectively, and major contamination source was stock farm and cultivated land. Annual BOD, T-N, T-P distribution(median value) of Song stream showed 1.0~2.2 mg/L, 3.16~5.85 mg/L and 0.024~0.197 mg/L Doam lake showed 1.1~1.9, 2.51~3.89 and 0.042~0.114 mg/L, respectively. Being compared of water quality at main stream between past and present, it showed that the water quality has improved since last five years. BOD improvement rate was 8~50%. Run off loading of BOD, T-N, T-P was 366, 1129, 17.2 kg/day, and run off rate was 13.6%, 86.2%, 11.3% respectively. Finally, the result of productivity survey of each industry, leisure town, cultivated land and large stock farm was 118, 46, 50 billion won, per T-P 1kg productive, and productivity portion was 100, 39, 42% respectively, and the highest economical efficiency industry was leisure facilities.

  • PDF

A study on the correlation between non-point source pollutants from the forest of Juam basin and algae bloom in the Juam lake. (주암호유역 산림기원 비점오염원물질과 주암호에 서식하는 조류번식간의 상관성 규명)

  • Kim, Nam-Jong;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.39-48
    • /
    • 2006
  • In Juam basin, the ratio of non-point pollution source among pollutant loading of basin was significantly high, since the utilization level of land was high. In addition, the most pollutants were not treated and flowed out. In this study, the correlation between non-point source pollutants from the forest area and increasing algae was investigated. 1. Chl-a concentration flowed out to runoff from forest area and stream water was low as $0.1{\sim}20.3{\mu}g/{\ell}$ and $0.1{\sim}9.3{\mu}g/{\ell}$, respectively, and chl-a concentration ($0.1{\sim}28.5{\mu}g/{\ell}$) of branch stream was higher $5{\sim}7$ times than that of runoff from forest area. 2. In correlation between runoff from forest area and Juam lake water, annual chl-a concentration of area front Juam dam was higher twice than forest area. 3. In runoff from forest area within Juam basin, flagellate, green, diatom and blue algae occupied $33.0{\sim}41.7%$, $22.2{\sim}30.8%$, $17.3{\sim}22.5%$ and $13.7{\sim}17.6%$, respectively. 4. In runoff from forest area, both green and diatom algae were maintained constantly irrespectively of season, and flagellate algae dominated since August. 5. In characteristics by forest tree types, four types algae were inhabited in mixed forest, and flagellate algae were higher in conifer and broadleaf forest than in other area. And green algae in herbaceous forest were higher than other area.