• Title/Summary/Keyword: sound absorption coefficients

Search Result 73, Processing Time 0.023 seconds

Investigation on the Effects of Air-Damping on the Sound Absorption Coefficients Measured in the Tube (관내법 시험시 Air-Damping 이 흡음계수에 미치는 영향 고찰)

  • 정완섭;서재갑;이두희;황재호
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.797-801
    • /
    • 1997
  • This paper raises issues in testing the absorption coefficients of sound-absorptive samples using the standing wave apparatus according to the Korean standard of KS F 2814. The standard code does not consider any effect of air-damping which is significant in testing relatively low sound-absorptive samples. This limitation has been shown to yield much variation of sound absorption coefficients for recent samples tests whose coefficients are less than 10%. An improved method of calculating the sound absorption coefficients is proposed in this work and its effectiveness in real test is also illustrated. Finally, the guideline for the modification of our national standard code KS F 2814 is proposed.

  • PDF

Prediction of the Sound Absorption Coefficient for Multiple Perforated-Plate Sound Absorbing System by Transfer Matrix Method (전달행렬법에 의한 다중 다공판 흡음시스템의 흡음계수 예측)

  • 허성춘;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.653-658
    • /
    • 2001
  • In this study, a new practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. In order to validate the proposed method, the absorption coefficients calculated by transfer matrix method for single perforated plate were first compared with the absorption coefficients measured by SWR method according to different porosity, hole diameter, and thickness of the perforated plate. Based on the comparison results, transfer matrix method was further applied to double and triple perforated plates to evaluate the absorption coefficients. The experimental results showed that the absorption coefficients from transfer matrix method generally agreed well with the corresponding absorption coefficients from SWR method. However, due to the limitations of the impedance model used in this study, the measured values were differed with the calculated values for small porosity, hole diameter, and thickness in size of the perforated plate indicating the need of impedance model development for multiple perforated-plate sound absorbing system covering wide ranges of porosity, hole diameter, and thickness of the perforated plate.

  • PDF

Comparison of Absorption Coefficient according to Test Methods (시험방법에 따른 흡음률 비교)

  • Lee, J.W.;Gu, J.H.;Park, H.K.;Kang, Dae-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.373-378
    • /
    • 2007
  • Today, the use of the sound absorptive material is increasing to improve the room acoustics in the auditorium and music hall, etc. Usually, the sound absorption materials have been used to enhance the performance of a noise barrier and improve the room acoustics in construction site. Generally, the sound absorbtion coefficients are the most important factor reflecting the sound absorbtion performance. There are two methods to measure the sound absorption coefficient. The first one is the reverberation room method, and the second is the impedance tube method. In this study, we measure the sound absorbtion coefficients using these two methods, and then we compared the results of the sound absorbtion coefficients to look into the difference of results between reverberation room method and impedance tube method. Also we compared the results of the sound absorbtion coefficients with respect to the size of sample and the volume of reverberation room. From the experiment, we could see that the sound absorbtion coefficients are measured equally for different sample size. But the sound absorbtion coefficients are measured differently according to test methods and test conditions.

Investigation on the Effects of Air-Damping on the Sound Absorption Coefficients Measured in the Tube (관내법 시험시 Air-Damping이 흡음률에 미치는 영향 고찰)

  • 정완섭;서재갑;황재호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.443-446
    • /
    • 1997
  • This paper raises issues in testing the absorption coefficients of sound-absorptive samples in the standing wave tube according to the Korean standard of KS F 2814. The code does not consider any effect of air-damping during test. This limitation has been shown to yield much variation of sound absorption coefficients for recent sample tests whose coefficients are less than 10 %. An improved method of calculating the sound absorption coefficients is proposed in this work and its effectiveness in real test is also illustrated. Finally, the guide line for the modification of our national standard code KS F 2814 is suggested for the future.

  • PDF

Sound Absorption Performance of Noise Barrier According to Single Number Rating Methods (단일수치 평가방법에 따른 방음벽의 흡음성능 고찰)

  • Kim, Yonghee;Lee, Sungchan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2017
  • In this study, single number rating methods of sound absorption coefficients are discussed. After that the sound absorption performance of noise barriers which are classified by Korea Standard are analyzed according to several standards. The existing rating methods such as NRC (noise reduction coefficient), SAA (sound absorption average) or ${\alpha}_w$ (weighted sound absorption coefficient) from ASTM C423, KS F 3505 and ISO 11654 are introduced. The sound absorption performance of noise barrier is evaluated to compare NRC and ${\alpha}_w$ value. When the value is over 0.6 there are large variance between NRC and ${\alpha}_w$ value. As results, it is needed to unify single number rating methods of sound absorption coefficients for Korean standards on sound absorbing materials.

Sound Absorption Rate and Sound Transmission Loss of CLT Wall Panels Composed of Larch Square Timber Core and Plywood Cross Band

  • Kang, Chun Won;Jang, Sang Sik;Kang, Ho Yang;Li, Chengyuan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • The square timbers of larch having cross section of $90mm{\times}90mm$ were glued laterally to be formed $1,200mm{\times}2,400mm$ panels which were used as cores for CLT wall panels. Then, structural plywood panels having size of $1,200mm{\times}2,400mm$ were used as cross band covering the small square timber cores to manufacture CLT wall panels. The sound absorption rate of CLT wall panels and polyester board attached CLT wall panels were investigated. The mean sound absorption coefficients of the former and the latter in the frequency range of 100-6400 Hz were 0.21 and 0.74, respectively. The noise reduction coefficients (NRC) of those were 0.21 and 0.40, respectively. Also, the mean sound transmission loss of CLT wood panel in the frequency range of 50-1600 Hz was 45.12 dB and that value at the frequency of 500 Hz was 42.49 dB. It was suggested that the polyester board attached CLT wall panels could be used as housing wall because of its high sound absorption rate and high sound transmission loss.

A New Estimation Model of Predicting the Sound Absorption Performance for Multiple Perforated Plate Systems (다중 다공판 시스템의 흡음성능 예측을 위한 계산모델 개발)

  • 허성춘;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.877-882
    • /
    • 2002
  • A new estimation model of predicting the sound absorption performance for multiple perforated plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method far various porosity and cavity depth. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients generally agree well with the measured values.

  • PDF

Estimation of the Sound Absorption Performance for Multiple Layer Perforated Plate Systems by Transfer Matrix Method (전달행렬법을 이용한 다중 다공판 시스템의 흡음성능 예측)

  • 이동훈;허성춘;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.709-716
    • /
    • 2002
  • A practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method for various porosity and spacing of the perforated plate. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients agree well with the measured values.

Sound Absorption Capability and Anatomical Features of Highly Sound Absorptive Wood (고흡음성 목재의 흡음성능과 구조적 특징)

  • Kang, Chun-Won;Kang, Wook;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.292-297
    • /
    • 2010
  • Sound absorption capability and anatomical features of kagikazura (Uncaria rhynchophylla) and larch (lalix kaemferi) wood were estimated. Sound absorption coefficients had been measured by the two microphone transfer function method and anatomical features of kagikazura wood examined by SEM observation. The sound absorption coefficients of Uncaria rhynchophylla was higher than lalix kaemferi. Especially, in the frequency range of 1 to 4KHz, sound absorption coefficients of kagikazura was about 2~3 times higher than those of lalix kaemferi. Abundant and big vessel observed on the cross sectional surface of kagikazura wood and simple perforation plate observed on the longitudinal surface. It was surmised that the abundant big vessel element and simple perforation plate behaved as a sound absorbing pore.

Density Profile and Sound Absorption Capability of Ceramics Manufactured from Sawdust, Chaff and Charcoal: Effect of Carbonization Temperature and Mixing Ratio

  • Jung-Woo HWANG;Seung-Won OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.234-242
    • /
    • 2024
  • In this study, the effect of carbonization temperature and mixing ratio of ceramics manufactured from sawdust, chaff and charcoal on sound absorption performance and density profile was investigated. The density profile of ceramics prepared by the addition rates of sawdust, chaff and charcoal showed the highest value at 91.00% when the ratio of sawdust, chaff and charcoal was 50:25:15. However, the difference in density profile according to the addition rate was insignificant. The density profile of ceramics manufactured according to the carbonization temperature showed the highest value of 88.06% when manufactured at 800℃. However, it does not show any particular trend, so it is understood that the effect of the carbonization temperature on the density gradient is small. On the other hand, the sound absorption coefficients of ceramics prepared by the addition rates of sawdust, chaff and charcoal is between 0.3 and 0.4 at almost all frequencies when the addition rates of sawdust, chaff and charcoal are 50:30:10 and 50:35:5, respectively. Therefore, as the chaff particles increased, the sound absorption performance was improved. In addition, the sound absorption coefficients of the ceramics manufactured at each carbonization temperature showed the highest value in the ceramics manufactured at 1,200℃.