• Title/Summary/Keyword: sorption isotherms

Search Result 110, Processing Time 0.026 seconds

Naphthalene Sorption on HPTMA-Modified Clays

  • 이승엽;김수진
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.52-52
    • /
    • 2001
  • Clays coated with cationic surfactants (organoclays) have been investigated due to their effectiveness in sorbing organic compounds from water The objectives of this study were to (1) study the sorption characteristics or a cationic surfactant (HDTMA) to clay minerals; (2) examine the partitioning of HOC (naphthalene) to the adsorbed surfactants within the context of the first objective, and (3) develop overall HOC distribution coefficients that consider sorbed surfactant amounts. The sorption of hydrophobic organic contaminant was due to partitioning of the organics into the organic pseudophase created by the surfactant tail groups. Sorption of naphthalene by HDTMA-clays at different surfactant surface coverages revealed that the naphthalene K$\_$d/ values were affected by the surface concentration of surfactant. In our study the kaolinite was modified with a cationic surfactant to achieve different fractional organic carbon contents and different surfactant molecule configurations on the surface. All of the sorption isotherms were nearly linear and could be described by a distribution coefficient (K$\_$d/). The sorption of naphthalene by the surfactant-modified kaolinite was found to be dependent on the bound surfactant molecule configuration as well as on the fractional organic carbon content but halloysite was not affected by the increase of surfactant amounts. Results from this investigation provide additional insight into the role that sorbed surfactant structure plays in HOC partitioning.

  • PDF

Sorption of Chromium Ions from Aqueous Solution onto Chemically Activated Carbons Developed from Maize Cobs

  • Youssef, A.M.;El-Nabarawy, Th.;Shouman, Mona A.;Khedr, S.A.
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • Chemically activated carbons were prepared from maize cobs, using phosphoric acid of variable concentration. The textural parameters of the activated carbons were determined from the nitrogen adsorption isotherms measured at 77 K. The chemistry of the carbon surface was determined by measuring the surface pH, the pHPZC and the concentration of the carbon - oxygen groups of the acid type on the carbon surface. Kinetics of Cr(VI) sorption/reduction was investigated at 303 K. Two processes were investigated in terms of kinetics and equilibrium namely; Cr(VI) removal and chromium sorption were studied at various initial pH (1-7). Removal of Cr(VI) shows a maximum at pH 2.5. At pH<2.5, sorption decreases because of the proton competition with evolved Cr(III) for ion exchange sites. The decrease of sorption at pH>2.5 is due to proton insufficiency and to the decrease of the extent of Cr(VI) reduction. The chemistry of the surface of activated carbon is an important factor in determining its adsorption capacity from aqueous solutions particularly when the sorption process involves ion exchange.

Sorption Characteristics of Procymidone and 3,5-Dichloroaniline on Microplastic Films (미세플라스틱 필름의 프로시미돈과 3,5-다이클로로아닐린 흡착 특성)

  • Ji Won Yang;Youn-Jun Lee;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.184-192
    • /
    • 2023
  • Microplastics are generated by the breakdown of plastic wastes in agricultural soil and residual pesticides in agricultural soil can adsorb on microplastics. In this study, the sorption characteristics of procymidone (PCM) and one of its metabolites, 3,5-dichloroaniline (DCA), on low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics were investigated. The sorption and desorption tests were carried out for 72 h using LDPE or PVC microplastic films to study the sorption isotherms of PCM and DCA and kinetics for sorption and desorption of PCM. The results show that the sorption data of PCM and DCA were better described by the Freundlich isotherm model (R2=0.7568-0.9915) than the Langmuir isotherm model (R2=0.0545-0.5889). The sorption potential of PVC for both PCM and DCA was greater than that of LDPE. The sorption data of PCM on PVC and LDPE were fitted better to the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The PCM sorption on LDPE was about three times faster than that on PVC. Both microplastic films released the sorbed PCM back to water, and more PCM was released from PVC than LDPE, but the desorption rate was faster with LDPE than PVC. Overall, the results show that different microplastics have different sorption characteristics for different chemicals. Also, the sorbed chemicals can be released back to environment suggesting the potential of contaminant spread by microplastics. Thus, the management practices of microplastics in agricultural soil need to consider their interaction with the chemical contaminants in soil.

Adsorption Characteristics of Heavy Metals for Waste Sludge and Oyster Shell (폐슬러지와 폐굴껍질의 중금속 흡착특성)

  • Jeon, Dae-Young;Lee, Kyung-Sim;Shin, Hyun-Moo;Oh, Kwang-Joong
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1053-1059
    • /
    • 2006
  • This study was performed to investigate the possible uses of waste sludge for the removal of heavy metal ions. The adsorption experiments were conducted with wastes such as sewage treatment sludge, water treatment sludge and oyster shell to evaluate their sorption characteristics. Heavy metals selected were cadmium, copper and lead. in the sorption experiments on the sewage treatment sludge, water treatment sludge, oyster shell and soil, sorption occurred in the beginning and it reached equilibrium after 40 minutes on the oyster shell and 4 hour on the sewage treatment sludge and water treatment sludge. Results of Freundlich isotherms indicated that sewage treatment sludge could be properly used as an adsorbent for heavy metals and sorption strength of heavy metals was in the order of Pb > Cu > Cd. In the influence of pH on the adsorbents, sorption rate was more than 80% in pH 4 and most of heavy metals were adsorbed in pH 9. Adsorption rate of Cd decreased with decreasing pH and then adsorption rate of Cu was lower in soil.

Remediation of groundwater contaminated with hydrophobic organic compounds using biobarrier (소수성 유기오염물질로 오염된 지하수의 Biobarrier에 의한 복원)

  • 김영규;신원식;김영훈;송동의
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.114-117
    • /
    • 2002
  • Sorption and desorption studies were conducted to evaluate several media as a potential biobarrier for the remediation of groundwater contaminated with hydrophobic organic compounds (HOCs). Pahokee and Bion peats, Devonian Ohio shale, vermicompost, and 50% HDTMA-montmorillonite were used as model sorbents. Sorption and desorption isotherms were determined using the radiolabeled phenanthrene (Phe). Sorption capacity of Phe on several sorbents was in the order Ohio shale > 50% HDTMA-montmorillonite > vermicompost > Pahokee peat. Mineralization kinetics was investigated for Phe-sorbed sorbents using Pseudomonas putida 17484. Among the tested sorbents, active biodegradation of Phe was observed in shale and vermicompost: degradation in shale exhibited little lag time while that in shale showed a significant lag time. Results of this study indicate that sorbents used in this work can be utilized as permeable reactive biobarrier media for the remediation of HOC-contaminated groundwater.

  • PDF

Aluminum Complexation and Precipitation with Seaweed Biosorbent

  • Lee, Hak-Sung;Kim, Young-Tae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • Biomass of non-living brown seaweed Sargassum fluitans pretreated by different methods is capable of taking up more than $10\%$ (11 meq/g) of its dry weight in aluminum at a pH of 4.5. It is indicated that the biomass sequestered the aluminum in the form of polynuclear aluminum species. The fraction of $Al(OH)_3$ Precipitated in the aluminum nitrate solution without biomass at pH 4.5 increased as the Al concentration increased. Aluminum-alginate complex precipitated in the solution as alginate was partially released from the biomass. External colloidal precipitate occurring in native and protonated S. fluitans biomass sorption systems caused a significant difference in Al sorption isotherms determined by standard and desorption methods, respectively, Sodium ions added for pH adjustment were not sorbed at all in the presence of aluminum ions.

  • PDF

Influence of Growth Rate on Biosorption of Heavy Metals by Nocardia amarae

  • Kim, Dong Wook;Daniel K. Cha;Hyung-Joon Seo;Jong Bok Bak
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.878-881
    • /
    • 2002
  • The goal of the current research was to assess the influence of the growth rate of Nocardia amarae on its overall metal binding capacity. Batch sorption isotherms for cadmium (Cd), copper (Cu), and nickel (Ni) showed that Nocardia cells harvested from chemostat cultures at a dilution rate of $0.33d^-1$ had a significantly higher metal sorption capacity than cells grown at 0.5 and $1d^-1$. The cell surface area estimated using a dye technique indicated that pure N. amarae cells grown at a lower growth rate had a significantly more specific surface area than cells harvested from a higher growth rate operation. Accordingly, this difference in the specific surface area seemed to indicate that the higher metal sorption capacity of the slowly growing Nocardia cells was due to their higher specific surface area.

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

Equilibrium and Kinetic Studies of the Biosorption of Dissolved Metals on Bacillus drentensis Immobilized in Biocarrier Beads

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out to quantify the biosorption of Pb(II) and Cu(II) by the biocarrier beads. The parameters obtained from the thermodynamic analysis revealed that the biosorption of Pb(II) and Cu(II) by biomass immobilized in biocarrier beads was a spontaneous, irreversible, and physically-occurring adsorption phenomenon. Comparing batch experimental data to various adsorption isotherms confirmed that Koble-Corrigan and Langmuir isotherms well represented the biosorption equilibrium and the system likely occurred through monolayer sorption onto a homogeneous surface. The maximum adsorption capacities of the biocarrier beads for Pb(II) and Cu(II) were calculated as 0.3332 and 0.5598 mg/g, respectively. For the entire biosorption process, pseudo-second-order and Ritchie second-order kinetic models were observed to provide better descriptions for the biosorption kinetic data. Application of the intra-particle diffusion model showed that the intraparticle diffusion was not the rate-limiting step for the biosorption phenomena. Overall, the dead biomass immobilized in polysulfone biocarrier beads effectively removed metal ions and could be applied as a biosorbent in wastewater treatment.

Competitve Interactions of Cadmium with Magnesium in Three Different Soil Constituents (3개의 다른 토양에서의 카드늄과 마그네시움의 경쟁적 상호작용)

  • Doug-Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • To study the Cd adsorption in the presence of competing ions in soil-solution interphase, three soil samples from the Bt horizon were taken and analyzed for their physical and chemical properties. Adsorption of ethylene glycol monoethyl ether(EGME) and N, were determined to establish the specific surface area of the soils. We attempted to establish a qeneralizing competitive sorption isotherms for soils of entirely different composition of the solid phase, resulting in the routine use as a guidelines for the fate of reactive solute in soil profiles. Many physicochemical factors including competitive adsorption bettween solutes will affect the general adsorption phenomena as shown in a single not only on the soil:solution ratio used, but also on the surface areas of its respective soil samples. This phenomenon was attributed to competition Cd for sorption sites with Mg by different soil constituents. These adsorption isotherms are able to use as examples to demonstrate that this phenomenon can complicate the development of a standardized batch adsorption procedure as well as interpreting fate and adsorption of toxic inorganic compounds.

  • PDF