• Title/Summary/Keyword: sorption

Search Result 1,074, Processing Time 0.042 seconds

Analysis of Chloride Ion Penetraion for Marine Concrete Structure with Cyclic Humidity Environment (건습이 반복되는 환경하의 해양콘크리트 구조물에 대한 염소이온 침투 해석)

  • Han, Sang-Hun
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2004
  • The diffusion model, which considers diffusion and sorption, is proposed. The FEM program developed on the basis of the diffusion model provides the estimation of chloride concentration according to cyclic humidity and sorption. After the humidity diffusion analysis is carried out, the chloride ion diffusion and sorption analysis are conducted on the basis of the preestimated humidity data in each element. Each element has different analysis variables at different ages and locations. At early ages, the difference between inner and outer relative humidity causes the chloride ion penetration by sorption. As the humidity diffusion reduces the difference with age, the effect of sorption on the chloride ion penetration decreases. By the way, the cyclic humidity increases the effect of sorption on the chloride ion penetration at early ages, and the quantity of chloride ion around steel at later ages. Therefore, the in situ analysis of chloride ion penetration for marine concrete structures must be performed considering the cyclic humidity condition and the long term sorption.

Experimental Study on Uranium Sorption onto Silica Colloids: Effects of Geochemical Parameters

  • Baik, Min-Hoon;Hahn, Pil-Soo
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.261-269
    • /
    • 2001
  • In this study, sorption experiments of uranium onto silica colloids were carried out and the effects of important geochemical parameters such as pH, ionic strength, carbonate concentration, colloid concentration, and total concentration of uranium were investigated. The sorption coefficients of uranium for silica colloids named as pseudo-colloid formation constants were about 10$^4$~ 10$^{5}$ mL/g depending on the experimental conditions. The effects of the geochemical parameters were found to be important in the sorption of uranium onto silica colloids. A Langmuir type sorption isotherm of uranium between silica colloids and the solution phase was also presented. The sorption mechanisms were explained by analyzing the effects of the geochemical parameters.

  • PDF

Sorption/Desorption Characteristics of Halogenated Aliphatic Compounds from Activated Sludge, Sediment, and Clay (지방족 할로겐화합물의 활성슬러지와 해안저질 및 점토에서의 흡탈착 특성)

  • 김종오;박종석;최연돈
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.961-969
    • /
    • 2002
  • This study was performed : 1) to establish the experimental analysis conditions for the sorption and desorption of toxic organic contaminants to/from the activated sludge, sediment, and clay, and 2) to determine the sorption and desorption equilibrium coefficients of some representative halogenated aliphatic compounds. Through the preliminary sorption test using Azo dye, a setting of quantitative experimental conditions to determine the sorption and desorption characteristics was decided as follows; equilibration time of 180 minutes, centrifuge for 15 minutes at 5000$\times$g, and 500mg/$\ell$ of TOC concentration. The sorption and desorption characteristics of halogenated aliphatic compounds onto activated sludge, sediment and clay could be described very well using the Freundlich isotherm. The preference of the average sorption capacity of the overall compounds showed in the sequence sediment 0.26mg/g, clay 0.23mg/g, and activated sludge 0.11 mg/g. The desorption rate of the sorbed compounds onto activated sludge, sediment and clay was approximately 89.8%, 35.3%, and 66.4%, respectively.

Effects of solution, sorbate, and sorbent chemistries on polycyclic aromatic hydrocarbon sorption to hydrated mineral surfaces

  • Yim, Soobin
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.132-135
    • /
    • 2003
  • Solution chemistry, sorbate chemistry, and sorbent chemistry were widely investigated to find important factors that affect PAH sorption on mineral surfaces and to elucidate its microscopic mechanism. The solution chemistry, pH and ionic strength caused measurable change of HOC sorption reaction to minerals. The detectable change of Ka occurred at a pH region crossing the PZC (Point of Zero Charge) of each mineral. The PAH hydrophobicity, one of sorbate chemistry, was observed to have a strong correlation with PAM sorption to mineral. Mineral surface area was not found to be a predominant factor controlling PAH sorption. The mineral type might be more likely to play a crucial role in controlling the PAH sorption behavior. The CEC (Cation Exchange Capacity) of mineral, representing surface charge density, has meaningful correlation with regression slope of sorption coefficients (log $K_{d}$) versus aqueous activity coefficients (log Υ$_{w}$).).).

  • PDF

Theoretical Analysis on the Heat and Mass Transfer in a Sorption Cool Pad (흡습 냉각 패드에서의 열 및 물질전달에 관한 연구)

  • 황용신;이대영;박봉철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.167-174
    • /
    • 2004
  • A sorption cool pad brings cooling effect without any pre-cooling, nor any external energy supply. It uses evaporative cooling effect stimulated by the desiccative sorption. In this paper, heat and mass transfer in the sorption cool pad are investigated theoretically. The evaporative cooling process caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. Two nondimensional parameters are found to dominate the cooling process: one is related to the psychrometric characteristics and the other is to the sorption capacity of the desiccant. The former decides the time to reach the lowest temperature and the later controls the time duration of the cooling effect being sustained.

Mechanisms of Cu(II) Sorption at Several Mineral/Water Interfaces: An EPR Study

  • Cho, Young-Hwan;Hyun, Sung-Pil;Pilsoo Hahn
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.72-72
    • /
    • 2002
  • In most traditional sorption study in environmental conditions, experimental sorption data have been measured and interpreted by empirical ways such as partition coefficient and sorption isotherms. A mechanistic understanding of heavy metal interactions with various minerals (metal oxides, clay minerals) in aqueous medium is required to describe the behavior of radioactive metal ions in the environment. Various spectroscopic methods provide direct or indirect information on sorption mechanisms involved. We applied EPR (Electron Paramagnetic Resonance) spectroscopy to investigate the nature of metal ion sorption at water/mineral interfaces using Cu(II) as a spin probe. The major sorbed species and their motional state was identified by their EPR spectra. They showed distinct signals due to their strength of binding, local structure and motional state. The EPR results together with macroscopic sorption data show that sorption involved at least three different mechanisms depending on chemical environments (1).

  • PDF

Sorption and Permeation Characteristics of Oxygen and Nitrogen for Polysulfone Hollow-Fiber Membrane (폴리폰설 중공사막에 대한 산소와 질소의 수착 및 투과특성)

  • 조정식;김종수;이광래
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.25-35
    • /
    • 1999
  • The sorption and permeation experiments with $O_2$ and $N_2$ were performed with poly sulfone hollow-fiber membrane to obtain oxygen-enriched air. Sorption of $O_2$ on poly sulfone membrane was 1.5'||'&'||'not;2.0 times higher than that of N2. Sorption of oxygen and nitrogen in poly sulfone membrane was described satisfactorily with "dual-mode sorption model". In the low pressure range below 3kgr!cm', about 85% of total sorption was Langmuir-type sorption and only 15% was Henry-type sorption. In the higher pressure above 3kgf/${cm}^2$, Langmuir sorption sites became almost saturated and reached asymptote, and the increase in total sorption with pressurizing might be due to the Henry~type sorption. The ideal separation factor ( P $O_2$/ P $N_2$) was in the range of 2~4, while the actual separation factor for the mixture was reduced to the value of 1.7~2.2.2.2.

  • PDF

Sorption behavior of Eu(III) on Tamusu clay under strong ionic strength: Batch experiments and BSE/EDS analysis

  • Zhang, Han;He, Hanyi;Liu, Jun;Li, Honghui;Zhao, Shuaiwei;Jia, Meilan;Yang, Jijun;Liu, Ning;Yang, Yuanyou;Liao, Jiali
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.164-171
    • /
    • 2021
  • The europium sorption on Tamusu clay was investigated by batch sorption experiments and spectroscopic study under the condition of strong ionic strength. The results demonstrated that europium sorption on Tamusu clay increased rapidly with pH value, but decreased with the ionic strength of solution increased. The europium sorption also increased in the presence of humic acid, especially at low pH value. The sorption could be fitted by Freundlich isotherm model and the europium sorption on clay was spontaneous and endothermic reaction. Besides, the result indicates that ion exchange was the main process at low pH value, while inner-sphere surface complexation dominated the sorption process at high pH value. The Backscatter electron scanning/Energy Dispersive Spectrometer(BSE/EDS) and the effect of Na for europium sorption results further suggested that europium sorption on Tamusu clay mainly competed with Na at low pH value. Overall, the results in this research were of significance to understand the sorption behavior of europium on the geological media under high ionic strength.

Equilibrium Sorption of Heavy Metals (Pb, Cu. Zn, Cd) onto Scoria

  • Kwon, Jang-Soon;Yun, Seong-Taek
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.302-305
    • /
    • 2002
  • Scoria is a bomb-sized, generally vesicular pyroclast that is red or black in color and light in weight. In this study, scoria from Cheju was examined for the use as a sorbent. It is composed of plagioclase, olivine, hornblende, pyroxene, and glass, with an average composition of 49.84% SiO$_2$, 14.07% A1$_2$O$_3$, End 9.14% Fe$_2$O$_3$. Studies on kinetic isotherm sorption of Zn(II) onto scoria under various parameters such as initial zinc concentration, particle size, and adsorbent/adsorbate ratio were carried out using an agitated batch. The results suggest that the smaller scoria size and the larger adsorbent/adsorbate ratio produce the higher degree of Zn(II) removal. More effective removal also appears at lower initial Zn concentration. The sorption behavior of Zn(II) onto scoria seems to be mainly controlled by cation exchange. Studies on equilibrium isotherm sorption of other heavy metals (Pb, Cu, Cd) onto scoria were also conducted and compared with those onto powdered activated carbon (PAC) and non-organic matter scoria (NOS), The results suggest that the Cheju scoria has the slightly higher sorption capability than PAC and NOS, and the order of the effective sorption onto scoria and PAC is Pb > Cu > Zn > Cd. The monometal sorption onto scoria is more stronger than the competitive sorption.

  • PDF

Slow Sorption of Hydrophobic Organic Contaminants in Natural Soils (자연토양에서의 소수성 유기오염물질의 느린 흡착)

  • Shin, Won Sik;Park, Taehyo;Ahn, Taebong;Chun, HeeDong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.103-114
    • /
    • 2001
  • Sorption studies were conducted to determine if slow sorption fraction is observed in recent1y deposited organic matter by studying wetland soils explicitly. Sorption characteristics of hydrophobic organic compounds (chlorobenzene and phenanthrene) in recently deposited freshwater marsh soils were determined using a batch sorption procedure. Relative indicators of organic matter age were assessed using several techniques including the ratio of elemental oxygen to carbon in the organic matter. Slow sorption characteristics for both surface marsh soil (top 0-2 cm, <5 years old) and deeper marsh soil (below 10-cm, >20 years old) were compared against relatively older PPI (Petro Processors, Inc. Superfund site) and BM (Bayou Manchac) soils to investigate whether soil age can cause differences in sorption of organic compounds in wetland soils. Increases in sorption non-linearity of slow sorption model parameters (increase in KF and decrease in N) explain the existence of slow sorption fraction. The results of slow sorption model indicates the presence of a sizable slow sorption fraction; 25.4 - 26.3% (chlorobenzene) and 1.4 - 1.9% (phenanthrene) of the sorbed mass in wetland soils and 40.0 - 55.93% (chlorobenzene) and 2.9 - 3.19% (phenanthrene) of the sorbed mass in PPI and BM soils, respectively. The slow sorption fraction increased in the order of surface < deeper < PPI < BM soil indicating that size of the slow sorption fraction increases with soil organic matter age.

  • PDF