• 제목/요약/키워드: somatosensory input

검색결과 15건 처리시간 0.02초

반복적 경두개자기자극을 통한 고유감각 구심로 차단이 동측 및 반대측 운동유발전위에 미치는 영향 (The Effect of Repetitive Transcranial Magnetic Stimulation-Induced Proprioceptive Deafferentation to Ipsilateral and Contralateral Motor Evoked Potentials)

  • 김민정;이경민;이광우
    • Annals of Clinical Neurophysiology
    • /
    • 제8권2호
    • /
    • pp.158-162
    • /
    • 2006
  • Background: It has been proposed that proprioceptive input can modulate neural excitability in both primary motor cortices (M1) simultaneously, although direct evidence for this is still lacking. Previous studies showed that proprioceptive accuracy of one hand is reduced after the application of one-Hz repetitive transcranial magnetic stimulation (rTMS) for 15 minutes over the contralateral somatosensory cortex. The aim of this study was to investigate the effect of rTMS-induced central proprioceptive deafferentation to excitability of both M1 as reflected in ipsilateral and contralateral motor evoked potentials (MEP). Methods: MEPs of both abductor pollicis bravis (APB) muscles were recorded using single-pulse TMS over right M1 in seven healthy subjects. Immediately after one-Hz rTMS was applied for 15 minutes over the right somatosensory cortex, the MEP measurement was repeated. The proprioceptive function of the left thumb was assessed, before and after rTMS, using a position-matching task. Results: There was an increase in ipsilateral MEP after the rTMS: whereas no MEPs were recorded on the ipsilateral hand before the rTMS, MEPs were recorded in both ipsilateral and contralateral hand in three of seven subjects. At the same time, the mean log amplitude was reduced and the mean latency was prolonged in the contralateral MEP. Conclusions: rTMS-induced central proprioceptive deafferentation reduces the MEP generation in the contralateral hand, and fascilitates that in the ipsilateral hand. A further study with a larger sample seems warranted to confirm this finding and to elucidate the neurophysiology underlying it.

  • PDF

편측 무시 환자에서 시각 정보 차단이 머리 위치 정렬에 미치는 영향: 사례 연구 (The Effect of Visual Cue Deprivation for the Head Alignment on Unilateral Neglect Patient: Case Report)

  • 장종성;박정미;이미영
    • 대한물리의학회지
    • /
    • 제8권3호
    • /
    • pp.337-342
    • /
    • 2013
  • PURPOSE: The Unilateral neglect is characterized by difficulty shifting attention to the side of space opposite the brain lesion and frequently reducing use of contralesional extremities. This study was to identify whether the visual deprivation was responsible for head position on unilateral neglect patient after stroke. METHODS: A patient with left middle cerebral artery infarction participated in the study. We assessed neglect using line bisection and star cancellation test. Patient was instructed to maintain correct alignment of trunk and head in a sit position. We evaluated degree of head lateral tilting and rotation. Then, patient was blocked visual input. Also, we evaluated head position in the same way. RESULTS: He scored 3 points in the line bisection test and 9 points star cancellation test. In postural evaluation, he had deviated posture such as lateral head tilting and rotation. After visual cue deprivation, patient showed different head position which was decreased degree of head tilting and rotation. CONCLUSION: For vertical body orientation, it was used multiple sensory references including the vestibular, somatosensory, and visual system. This finding suggested that abnormal posture of neglect patient could be related to the visual input. It has important clinical implications in terms of understanding the neglect.

발바닥의 피부 감각 변화가 보행 중에 족저압 분포에 미치는 영향 (The Effect of Changes in Foot Cutaneous Sensation on Plantar Pressure Distribution during Gait)

  • 성대영;김중휘;박지원
    • The Journal of Korean Physical Therapy
    • /
    • 제24권5호
    • /
    • pp.306-312
    • /
    • 2012
  • Purpose: The purpose of this study was to examine the effect of changes in foot cutaneous sensation on plantar pressure distribution during gait. Methods: Sixteen healthy young subjects participated in this experiment. All subjects performed two trials of walking under three somatosensory conditions induced by a normal facilitatory insole that provides increased plantar sensory stimulation, and application of lidocaine cream to the plantar surface of the foot to reduce the sensitivity of the soles. Semmes-Weinstein monofilaments were used for evaluation of reduced plantar sensation. The Pedar system was used for measurement of pressure distribution at the plantar surface of the foot. Results: Pressure in the lateral midfoot area showed an increase with increasing and decreasing sensory inputs. When sensory input was increased, plantar pressure showed a decrease in the forefoot area. When sensory input was decreased, plantar pressure showed an increase in the lateral forefoot area and a decrease in the hallux area. Conclusion: By altering sensory feedback, plantar pressure distribution is changed during gait. Plantar cutaneous afferents play an important role in plantar distribution.

인간의 자세조절 메커니즘에 대한 연구 (A Review on the Mechanism of Human Postural Control)

  • 이동우
    • 한국운동역학회지
    • /
    • 제15권1호
    • /
    • pp.45-61
    • /
    • 2005
  • Stance is defined as any state in which the total mass of the body is supported by the feet. In order to maintain stance, the sum of gravito-inertial forces acting on the body must be registered by equal and opposite forces at the region of contact between the organism and the support surface. Balance is controlled by applying forces to the surface of support so as to maintain the body's center of mass vertically above the feet. for a muIti-segment organism, there can be a variety of ways in which balance can be controlled, since movements of different body segments can have similar effects on the control of balance. In general, the organism tends to have a body configuration that is aligned with gravito-inertial force when there are no external forces acting on it. If any segments of the body are not aligned with gravito-inertial force vector, a torque on that segment would tend to move the body's center of mass. The maintenance of postural stability is accomplished in humans by a complex neural control system. This requires organizing integrating and acting upon visual, vestibular, and somatosensory input, providing orientation information to the postural control system. The information necessary to control and coordinate movement is provided by the visual sense of eye position with respect to the surrounding surface layout, the vestibular sense of head orientation in the gravito-inertial space, and the somatic sense of body segment position relative to one another and to the support surface. In this study, perception and action capability was examined from various points of view. The underlying assumption of the study was that the change of postural configuration could be effected by organism, environment and task goal.

A 4×32-Channel Neural Recording System for Deep Brain Stimulation Systems

  • Kim, Susie;Na, Seung-In;Yang, Youngtae;Kim, Hyunjong;Kim, Taehoon;Cho, Jun Soo;Kim, Jinhyung;Chang, Jin Woo;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권1호
    • /
    • pp.129-140
    • /
    • 2017
  • In this paper, a $4{\times}32$-channel neural recording system capable of acquiring neural signals is introduced. Four 32-channel neural recording ICs, complex programmable logic devices (CPLDs), a micro controller unit (MCU) with USB interface, and a PC are used. Each neural recording IC, implemented in $0.18{\mu}m$ CMOS technology, includes 32 channels of analog front-ends (AFEs), a 32-to-1 analog multiplexer, and an analog-to-digital converter (ADC). The mid-band gain of the AFE is adjustable in four steps, and have a tunable bandwidth. The AFE has a mid-band gain of 54.5 dB to 65.7 dB and a bandwidth of 35.3 Hz to 5.8 kHz. The high-pass cutoff frequency of the AFE varies from 18.6 Hz to 154.7 Hz. The input-referred noise (IRN) of the AFE is $10.2{\mu}V_{rms}$. A high-resolution, low-power ADC with a high conversion speed achieves a signal-to-noise and distortion ratio (SNDR) of 50.63 dB and a spurious-free dynamic range (SFDR) of 63.88 dB, at a sampling-rate of 2.5 MS/s. The effectiveness of our neural recording system is validated in in-vivo recording of the primary somatosensory cortex of a rat.