• 제목/요약/키워드: somatic cell cloning

검색결과 76건 처리시간 0.032초

The Production of Transgenic Livestock and Its Applications

  • Han, Y. M;Lee, K. K.
    • 한국가축번식학회지
    • /
    • 제23권4호
    • /
    • pp.381-391
    • /
    • 1999
  • During the last 20 years, transgenic animal technology has provided revolutionary new opportunities in many aspects of agriculture and biotechnology. Several gene delivery systems including pronuclear injection, retroviral vectors, sperm vectors, and somatic cell cloning have developed for making transgenic animals. In the future major improvements in transgenic animal generation will be mainly covered by somatic cell cloning technology. Many factors affecting integration frequency and expression of the transgenes should be overcome to facilitate the industrial applications of transgenic technology. Transgenic animal technology has settled down in some areas of the biotechnology, especially the mass production of valuable human proteins and xenotransplantation. In the 21st century animal biotechnology will further contribute to welfare of human being.

  • PDF

Somatic Cell Nuclear Transfer in Rodents, the Little Big Animals

  • Roh, Sangho
    • 한국수정란이식학회지
    • /
    • 제27권4호
    • /
    • pp.205-209
    • /
    • 2012
  • Transgenic rats and mice are useful experimental animal models for medical research including human disease model studies. Somatic cell nuclear transfer (SCNT) technology is successfully applied in most mammalian species including cattle, sheep, pig and mouse. SCNT is also considered to increase the efficacy of transgenic/knockout mouse and rat production. However, in the area of reproductive biotechnology, the rodent model is inadequate because of technical obstacles in manipulating the oocytes including intracytoplasmic sperm injection and SCNT. In particular, success of rat SCNT is very limited so far. In this review, the history of rodent cloning is described.

Interspecies Somatic Cell Nuclear Transfer Technique for Researching Dog Cloning and Embryonic Stem Cells

  • Sugimura, Satoshi;Sato, Eimei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2011
  • Large quantities of high-quality recipient oocytes with uniform cytoplasm are needed for research in the promising field of somatic cell nuclear transfer (SCNT) and embryonic stem cell research. In canines, however, it is difficult to obtain large quantities of oocytes because each donor produces a limited number of mature oocytes in vivo. Although in vitro maturation (IVM) is considered an alternative approach to oocyte production, this technique is still too rudimentary to be used for the production of highquality, uniform oocytes in large quantities. One technique for overcoming this difficulty is to use oocytes obtained from different species. This technique is known as interspecies SCNT (iSCNT). This review provides an overview of recent advances in canine - porcine interspecies SCNT.

An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks

  • Lee, Jeoung Eun;Chung, Young Gie;Eum, Jin Hee;Lee, Yumie;Lee, Dong Ryul
    • BMB Reports
    • /
    • 제49권4호
    • /
    • pp.197-198
    • /
    • 2016
  • Although three different research groups have reported successful derivations of human somatic cell nuclear transfer-derived embryonic stem cell (SCNT-ESC) lines using fetal, neonatal and adult fibroblasts, the extremely poor development of cloned embryos has hindered its potential applications in regenerative medicine. Recently, however, our group discovered that the severe methylation of lysine 9 in Histone H3 in a human somatic cell genome was a major SCNT reprogramming barrier, and the overexpression of KDM4A, a H3K9me3 demethylase, significantly improved the blastocyst formation of SCNT embryos. In particular, by applying this new approach, we were able to produce multiple SCNT-ES cell lines using oocytes obtained from donors whose eggs previously failed to develop to the blastocyst stage. Moreover, the success rate was closer to 25%, which is comparable to that of IVF embryos, so that our new human SCNT method seems to be a practical approach to establishing a pluripotent stem cell bank for the general public as well as for individual patients.

A Rare and Often Unrecognized Brain Meningitis and Hepatopneumonic Congestion are a Major Cause of Sudden Death in Somatic Cloned Piglets

  • 박미령;조성근;임여정;박종주;김진회
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.18-18
    • /
    • 2003
  • In human, sudden infant death syndrome(SIDS) is synonyms for the sudden, unexpected and unexplained death of an infant. The incidence of SIDS has been estimated to be from 1 to 3%. Cloning has a relatively high rate of late abortion and early postnatal death, particularly when somatic cells are used as donors of nuclei and rates as high as 40 to 70% have been reported. However, the mechanisms for SIDS in cloned animals are not known yet. To date, few reports provide detailed information regarding phenotypic abnormality of cloned pigs. In this study, most of the cloned piglets were alive at term and readily recovered respiration. However, approximately 82% of male cloned piglets (81/22) died within a week after birth. Significant findings from histological examinations showed that 42% of somatic cloned male piglets died earlier than somatic cloned female piglets, most probably due to severe congestion of lung and liver or neutrophilic inflammation in brain, which indicates that unexpected phenotypes can appear as a result of somatic cell cloning. No anatomical defects in cloned female piglets were detected, but three of the piglets had died by diarrhea due to bacterial infection within 15 days after birth. Although most of male cloned piglets can be born normal in terms of gross anatomy, they develop phenotypic anomalies that include leydig cell hypoplasia and growth retardation post-delivery under adverse fetal environment and depigmentation of hair- and skin-color form puberty onset. This may provide a mechanism for development of multiple organ system failure in some cloned piglets. Th birth weights of male cloned pig in comparison with those of female cloned piglets are significantly reduced(0.8 vs 1.4kg) and showed longer gestational day(120 vs 114). In conclusion, brain meningitis and hepatopneumonic congestion are a major risk factor for SIDS and such pregnancy in cloned animals requires close and intensive antenatal monitoring.

  • PDF

Production of Cloned Korean Native Pig by Somatic Cell Nuclear Transfer

  • Hwang, In-Sul;Kwon, Dae-Jin;Oh, Keun Bong;Ock, Sun-A;Chung, Hak-Jae;Cho, In-Cheol;Lee, Jeong-Woong;Im, Gi-Sun;Hwang, Seongsoo
    • 한국발생생물학회지:발생과생식
    • /
    • 제19권2호
    • /
    • pp.79-84
    • /
    • 2015
  • The Korean native pig (KNP) have been considered as animal models for animal biotechnology research because of their relatively small body size and their presumably highly inbred status due to the closed breeding program. However, little is reported about the use of KNP for animal biotechnology researches. This study was performed to establish the somatic cell nuclear transfer (SCNT) protocol for the production of swine leukocyte antigens (SLA) homotype-defined SCNT KNP. The ear fibroblast cells originated from KNP were cultured and used as donor cell. After thawing, the donor cells were cultured for 1 hour with 15 ${\mu}M$ roscovitine prior to the nuclear transfer. The numbers of reconstructed and parthenogenetic embryos transferred were $98{\pm}35.2$ and $145{\pm}11.2$, respectively. The pregnancy and delivery rate were 3/5 (60%) and 2/5 (40%). One healthy SLA homotype-defined SCNT KNP was successfully generated. The recipient-based individual cloning efficiency ranged from 0.65 to 1.08%. Taken together, it can be postulated that the methodological establishment of the production of SLA homotype-defined cloned KNP can be applied to the generation of transgenic cloned KNP as model animals for human disease and xenotransplantation researches.

Effects of variation in the number and developmental stage of donor embryos and ovulation status of the surrogate mother on the efficiency of pig somatic cell cloning

  • Park, Mi-Ryung;Yoo, Jae Gyu;Hur, Chang-Gi;Sim, Bo-Woong;Kim, Myunghoo;Seo, Jakyeom;Kim, Byeong-Woo;Cho, Byung-Wook;Shin, Teak-Soon;Cho, Seong-Keun
    • 한국동물생명공학회지
    • /
    • 제35권3호
    • /
    • pp.258-264
    • /
    • 2020
  • This study investigated the effect of variation in the number of somatic-cell-cloned embryos and their developmental stage at transfer on pregnancy, as well as the influence of the estrus status of recipient pigs on in vivo development of cloned porcine embryos after embryo transfer. For somatic cell nuclear transfer (SCNT), fibroblast cells were obtained from a male porcine fetus. Recipient oocytes were collected from prepubertal gilts at a local abattoir and then cultured. After SCNT, reconstructed embryos of different numbers and developmental stages were transferred into recipient pigs. The developmental stage of the cloned embryos and the number of transferred embryos per surrogate showed no significant differences in terms of the resulting cloning efficiency. However, the pregnancy rate improved gradually as the number of transferred cloned embryos was increased from 100-150 or 151-200 to 201-300 per recipient. In pre-, peri-, and post-ovulation stages, pregnancy rates of 28.6%, 41.8%, and 67.6% and 16, 52, and 74 offspring were recorded, respectively. The number of cloned embryos and estrus status of the recipient pig at the time of transfer of the cloned embryo affect the efficiency of pig production; therefore, these variables should be particularly considered in order to increase the efficiency of somatic cell pig cloning.

Advancement and Application of Somatic Cell Nuclear Transfer Technique in Dog

  • Oh, H.J.;Hong, S.G.;Park, J.E.;Kim, M.J.;Gomez, M.N.;Kim, M.K.;Kang, J.T.;Kim, J.E.;Jang, G.;Lee, B.C.
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2009년도 특별 Symposium
    • /
    • pp.49-57
    • /
    • 2009
  • The cloning of canids was succeeded in 2005, several years after the birth of Dolly the sheep and also after the cloning of numerous other laboratory and farm animal species. The delay of successful somatic cell nuclear transfer (SCNT)was due to the unique reproductive characteristics of the female dogin comparison to other domestic mammals, such as ovulation of immature canine oocyte and a requirement of 25 days for the completion of meiosis within the oviduct (Holst & Phemister, 1971). When the technology for the recovery of in vivo matured oocyte was established, the application of cloning also became possible and cloned dog offspring were obtained. This report summarizes the progress of technical procedures that are required for cloning canids and the application of this technique. The first cloned dog, Snuppy, was achieved using an in vivo-matured oocyte which was enucleated and transferred with an adult skin cell of male Afghan hound. After establishment of a criterion of well-matured oocyte for the improvement of SCNT efficiency, we obtained three cloned female Afghan hound and a toy poodle cloned from 14 year-old aged Poodle using SCNT through this factor. To date, cloned dogs appeared to be normal and those that have reached puberty have been confirmed to be fertile. Through application of canine SCNT technique, first, we demonstrated that SNCT is useful for conserving the breed of endangered animal from extinction through cloning of endangered gray wolves using inter-species SCNT and keeping the pure pedigree through the cloning of Sapsaree, a Korean natural monument. Secondly, we showed possibility of human disease model cloned dog and transgenic cloned dog production through cloning of red fluorescent protein expressing dog. Finally, SCNT can be used for the propagation of valuable genotypes for making elite seed stock and pet dog. In summary, dog cloning is a reproducible technique that offers the opportunity to preserve valuable genetics and a potential step towards the production of gene targeted transgenic cloned dogs for the study of human diseases.

  • PDF