• Title/Summary/Keyword: solvent recovery

Search Result 445, Processing Time 0.033 seconds

Microwave-assisted extraction of paclitaxel from plant cell cultures (Microwave를 이용한 식물세포배양으로부터 paclitaxel 추출)

  • Hyun, Jung-Eun;Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.281-284
    • /
    • 2008
  • A simple and efficient microwave-assisted extraction procedure was developed and optimized for the extraction of paclitaxel from the plant cell cultures of Taxus chinensis. The biomass, immersed in a methanol-water mixture, was irradiated with microwaves in a closed-vessel system. The microwave-assisted extraction was compared with the existing conventional solvent extraction in terms of yield, extraction time, and solvent consumption. The use of microwave energy allows rapid recovery of paclitaxel from biomass and dramatically reduces extraction time and solvent usage compared to conventional solvent extraction. The paclitaxel was completely extracted from biomass by microwave-assisted extraction for 3 min at $50^{\circ}C$, for 6 min at $30^{\circ}C$ and $40^{\circ}C$, respectively.

Recovery of Gallium from Zinc Residues by Solvent Extraction (아연제련잔사로부터 용매추출법에 의한 갈륨의 회수)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.29-36
    • /
    • 2000
  • A study on the recovery of gallium from leaching solutions is carried out by solvent extraction in order to produce gallium oxide of high purity. The results show that the extraction of gallium is found to be increase with acidities of aqueous solution up to 7.4 M/L when pure isopropyl ether is used. And the extraction of iron also increases with increasing acidity of aqueous solution. It appears that the separation of gallium from iron cannot be satisfactorily accomplished with isopropyl ether. But, in the case of extaction with D2EHPA, almost complete extraction of iron is achieved-leaving all the gallium in the aqueous solution-by maintaining the acidity of aqueous solution at 2 M/L. Accordingly, $Ga_2O_3{\cdot}H_2O$ of more than 99wt.% in purity can be produced from zinc residues through the processes comprising of alkali leaching, precipitation by neutralization and solvent extraction using isopropyl ether and D2EHPA as extractants.

  • PDF

Optimization of Extraction Conditions for Swertiamarin in Swertia japonica Makino (당약의 swertiamarin 분석을 위한 추출조건 최적화)

  • Kim, Tae Hee;Jang, Seol;Lee, Ah Reum;Lee, A Young;Choi, Goya;Kim, Ho Kyoung
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2014
  • Objectives : Iridoid glycoside, swertiamarin is a well known bioactive component found in Swertia japonica Makino (SJ). In this study, we tried to optimize a suitable method which would extract swertiamarin effectively. Methods : Extraction of SJ was carried out by various conditions of time (5 - 60 min), temperature ($30-70^{\circ}C$), solvent (from non-polar to polar), and ratio of solvnet / sample (10 : 1 - 40 : 1) using ultrasonic extractor. Swertiamarin in SJ extracts was quantified by high performance liquid chromatography - Phtodiode array detector (HPLC-PDA) using C18 column and the analytical procedure was validated by evaluation of specificity, range, linearity, accuracy (recovery), precision (intra- and inter day variability), limit of detection (LOD), and limit of quantification (LOQ). Results : An efficient extraction condition for swertiamarin in SJ was optimized using sonicator extraction (temperature $40^{\circ}C$, solvent 20% methanol, solvent / sample (20 : 1), and time 10 min. Analytical procedure was optimized by HPLC-PDA using isocratic solvent system of acetonitrile and water (9 : 91), and the method was validated in regard to linearity (correlation coefficient, $R^2$ > 0.9999), range ($50-1000{\mu}g/mL$), intra- and inter-precision (RSD < 5.0 %), and recovery (99 -103 %). LOD and LOQ were 0.051 and $0.155{\mu}g/mL$, respectively. Conclusion : An optimized method of extraction for swertiamarin in SJ was established through conditions of diverse extraction and the validation result indicated that the method is suited for the determination of swertiamarin in SJ.

Can Non-aqueous Solvent Desalinate?: Suggestion of the Screening Protocol for Selection of Potential Solvents (비수용성 용매를 이용한 탈염화 가능한가?: 적용 가능한 용매선정 기법 제안)

  • Choi, Oh Kyung;Seo, Jun Ho;Kim, Gyeong Soo;Kim, Dooil;Lee, Jae Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.48-54
    • /
    • 2020
  • This paper presents a screening protocol for the selection of solvents available for the solvent extraction desalination process. The desalination solvents hypothetically and theoretically require the capability of (1) Forming hydrogen bonds with water, (2) Absorbing some water molecules into its non-polar solvent layer, (3) Changing solubility for water-solvent separation, and (4) Rejecting salt ions during absorption. Similar to carboxylic acids, amine solvents are solvent chemicals applicable for desalination. The key parameter for selecting the potential solvent was the octanol-water partitioning coefficient (Kow) of which preferable value for desalination was in the range of 1-3. Six of the 30 amine solvents can absorb water and have a variable, i.e., temperature swing solubility with water molecule for water-solvent separation. Also, the hydrogen bonding interaction between solvent and water must be stronger than the ion-dipole interaction between water and salt, which means that the salt ions must be broken from the water and only water molecules absorbed for the desalination. In the final step, three solvents were selected as desalination solvents to remove salt ions and recover water. The water recovery of these three solvents were 15.4 %, 2.8 %, 10.5 %, and salt rejection were 76 %, 98 %, 95 %, respectively. This study suggests a new screening protocol comprising the theoretical and experimental approaches for the selection of solvents for the desalination method which is a new and challenges the desalination process in the future.

Study for Seperation Process of Copper from the Low-grade Copper Ore by Hydrometallrugical Process (저품위 동광으로부터 습식제련공정에 의한 구리의 분리 공정 연구)

  • Shin, Dong Ju;Joo, Sung-Ho;Lee, Dongseok;Jeon, Ho-Seok;Shin, Shun Myung
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.57-66
    • /
    • 2021
  • In this study, we attempted to separate and recover Cu from low-grade copper ore by a hydrometallurgical process. The leaching sample obtained after crushing and sieving by 0.355 mm of low-grade copper ore contained 1.5% Cu, 4.7% Fe, 1.0% Mn, and 0.3% Zn. The Cu in the oxide ore was very well leached into sulfuric acid and 97% Cu leaching efficiency was achieved at 80℃ and 3 M sulfuric acid (H2SO4). From the leaching solution, Cu was separated by solvent extraction from Fe, Mn, and Zn using LIX984N. The separation tendency between Cu and other metals was confirmed through the distribution ratio and separation factor. By plotting the McCabe-Thiele Diagram, the optimum condition for recovering Cu is 5 vol.% LIX984N, 2-stage counter-current solvent extraction, and an O/A ratio of 0.5. Using this method, 99% of the Cu was extracted and a CuSO4 solution was finally obtained that contained 1.6 g/L Cu after the stripping process using 2 M H2SO4.

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process (전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상)

  • Joongwon, Park;Rina, Kim;Hyunju, Lee;Min-seuk, Kim;Hiesang, Sohn
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.486-495
    • /
    • 2022
  • This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

Fundamental Studies on the Equilibrium and Kinetics for the fractional Distillation Reaction of Waste Organic Solvent (폐용제 분별증류 회수 반응의 평형 및 속도론적 기초연구)

  • Noh Hyun-Sook;Kim Dong-Su
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.38-46
    • /
    • 2002
  • Fundamental investigations were conducted far the recovery process of waste organic solvent by fractional distillation in the aspects of equilibrium and kinetics. Mixture of toluene and xylene, which were both being used in the largest amount as industrial organic solvent, was taken as the artificial waste organic solvent and their distillation behaviors were studied. The purity of recovered solvent was investigated by Cir Chromatography and shown to be in the range of 94~98%. Based upon equilibrium calculations, the changes in the Gibbs free energy, standard enthalpy, and standard entropy for distillation reaction have been estimated. The standard enthalpy changes for toluene and xylene were shown to be 44.833 and 47.044 kJ $mol^{-1}$ respectively, which were similar to their molar heats of evaporation. The activation energies of distillation fur toluene and xylene obtained from kinetic studies were 3.281 and 2.699 kJ $mol^{-1}$ and they were about one tenths of the standard enthalpy changes of distillation reaction. The highness of the purity of recovered organic solvents suggested the possibility that the recovered waste organic sol-vent could partly replace the original solvent.

Separation of Cobalt and Nickel from Aqueous Solution (수용액(水溶液)에서 코발트와 니켈 분리(分離))

  • Liu, Yang;Lee, Manseung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • Recovery of pure cobalt and nickel from diverse resources is important due to the increased demand for these metals. In order to get cobalt and nickel with high purity, separation of them from other metal ions is necessary. In this review, several methods to obtain pure cobalt or nickel solution, such as solvent extraction, ion exchange, precipitation were introduced and compared. For solvent extraction, the advantage and disadvantage of the separation process together with detailed process conditions were investigated.

Resource Recycling Technology for the PCP-treated Ammunition Box (PCP로 방부 처리된 탄약목상자의 자원순환형 처리기술)

  • Lee, Jong-Chol;Choi, Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.123-131
    • /
    • 2006
  • This paper reports the apparatus and method for the safe treatment of pentachlorophenol(PCP)-treated ammunition box by solvent extraction. Experimental variables were chosen as the composition of solvents, types of substance(chips and sawdust), temperatures and sonication to obtain maximum PCP removal from wood samples of the dismantled ammunition box. Up to 99% of PCP in the wood chip was extracted within 2 hours at room temperature when using methanol as the solvent. The extraction volume ratio of methanol per dried sample was about 10. Type of samples, extraction temperature and sonification showed little effects on PCP extraction. Based on this study, a resource recycling system for the treatment of ammunition boxes was recommended.

Simultaneous Determination of Cinnamaldehyde and Coumarin in Oryeong-san using HPLC with Photodiode Array Detector

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Herbal Formula Science
    • /
    • v.18 no.2
    • /
    • pp.251-257
    • /
    • 2010
  • Objectives : To develop and validate High-performance liquid chromatography-photodiode array methods for simultaneous determination of two constituents in Oryeong-san(ORS). Methods : Reverse-phase chromatography using a Gemini C18 column operating at $40^{\circ}C$, and photodiode array(PDA) detection at 280 nm, were used for quantification of the two marker components of ORS. The mobile phase using a gradient flow consisted of two solvent systems. Solvent A was $H_2O$ and solvent B was acetonitrile. Results : Calibration curves were acquired with correlation coefficient ($r^2$)>0.9999, and the relative standard deviation(RSD) values(%) for intra- and inter-day precision were not exceed 1.0%. The recovery rate of each compound was in the range of 93.01-104.16%, with an RSD less than 2.0%. The contents of two compounds in ORS were 1.10-3.72 mg/g. Conclusions : The established HPLC method will be helpful to improve quality control of ORS.