• Title/Summary/Keyword: solvent pH

Search Result 896, Processing Time 0.03 seconds

Effects of pH and Potassium Chloride in Solvent System of High-Speed Countercurrent Chromatography (pH 및 염화칼륨 첨가가 고속역류크로마토그래피의 용매시스템에 미치는 영향)

  • Lee, Chang-Ho;Lee, Boo-Yong;Lee, Hyun-Yu;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1222-1227
    • /
    • 1997
  • Effects of the physical properties of solvent system such as pH and polarity change by salt addition in solvent system were investigated by using high speed countercurrent chromatography apparatus (Model CCC-1000, Pharm-Tech Research Corp. USA). The changes of pH and interfacial tension in solvent system of high speed countercurrent chromatography did not significantly affect on retention of stationary phase, but induced remarkable changes in the partition coefficient of ginkgo flavonoids, kaempferol, quercetin and isorhamnetin. The partition coefficients of ginkgo flavonoid standard increase with an increased pH of solvent system and quercetin sharply increased at pH 10.0. Retention of stationary phase decreases with an increased concentration of KCl in butanol of solvent system. Interfacial tension between two phase in solvent system of hexane increases with an increased concentration of KCl. The polarity of solvent system significantly changes the partition coefficients of ginkgo flavonoid.

  • PDF

Separation of Heavy Metals from Electroplating Waste Water by Solvent Extraction (용매추출법에 의한 광금폐수중 중금속의 분리에 관한 연구)

  • KIM Sung Gyu;LEE Hwa Yeung;OH Jong Kee
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2003
  • A study on the separation of heavy metals such as iron, copper, zinc and nickel from electroplating waste water has been investigated. The results showed that the PC-88A was more effective extractant for the extraction of zinc and the efficiency of zinc was to be about 100% at pH 2.5. And copper and nickel were extracted about 100% at pH 2 and more than 90% at pH 4~5 with LIX 84, respectively. On the other hand, in the case of solvent extraction of electroplating waste water(Acid-Alkali type) containing heavy metals, the ferric ion was first extracted at pH 2∼2.5 with 20% Naphthenic acid or 10% Versatic acid-10. And then, copper and zinc were extracted at pH 2 with 3% LIX 84 and at pH 2.5∼3 with 20% PC-88A respectively, remaining nickel in the raffinate. In this manner, the heavy metals in electroplating waste water could be effectively separated with solvent extraction method.

Fundamental Study on Solvent Sublation Using Salphen and Its Application for Separative Determination of Trace Ni(II), Co(II) and Cu(II) in Water Samples

  • Kim, Young-Sang;In, Gyo;Kim, Mi-Hyun;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1757-1762
    • /
    • 2006
  • A solvent sublation using salphen as a ligand was studied and applied for the determination of trace Ni(II), Co(II) and Cu(II) in water samples. The fundamental study was investigated by a solvent extraction process because the solvent sublation was done by extracting the floated analytes into an organic solvent from the aqueous solution. The salphen complexes of Ni(II), Co(II) and Cu(II) ions were formed in an alkaline solution of more than pH 8 and then they were extracted into m-xylene. It was known that the each metallic ion formed 1 : 1 complex with the salphen and the logarithmic values of extraction constants for the complexes were 3.3 5.1 as an average value. Based on the preliminary study, the procedure was fixed for the separation and concentration of the analytes in samples. Various conditions such as the pH of solutions, the influence of $NaClO_4$, the bubbling rate and time of $N_2$ gas, and the type of organic solvent were optimized. The metal-salphen complexes could be extracted into m-xylene from the solution of more than pH 8, but the pH could be shifted to acidic solution of pH 6 by the addition of $NaClO_4$. In addition, the solvent sublation efficiency of the analytes was increased by adding $NaClO_4$. The recovery of 97-115% was obtained in the spiked samples in which given amounts of 0.3 mg/L Ni(II), 0.8 mg/L Co(II) and 0.04 mg/L Cu(II) were added.

Manufacturing of mesoporous TiO2 film for dye-sensitized solar cell (염료감응형 태양전지용 나노다공질 TiO$_2$ 전극막의 제조)

  • Lee, Dong-Yoon;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.308-311
    • /
    • 2003
  • The mesoporous TiO2 film for the dye-sensitized solar cell was prepared by the spin coating using nano particle $TiO_2$ slurry. In order to obtain the good dispersion of nano size $TiO_2$ particles in slurry, the pH of solvent, the sort and quantity of solvent additive and the quantity of surfactant were adjusted. The experimental range of pH was $2\;{\sim}\;4$. The basic solvent for slurry was dilute $HNO_3$ and the solvent additives were ethylene glycol, propylene glycol and butylene glycol. The degree of particle dispersion was indirectly estimated by the viscosity of slurry and the microstructure after sintering. As results, the lower the pH of solvent was the lower the viscosity of the slurry became. The addition of ethylene glycol and propylene glycol to dilute $HNO_3$ brought about the lowering of viscosity and the enhancement of stability in slurry. The addition of surfactant lowered the viscosity of slurry. It was possible to obtain the homogeneous and uniformly dispersed mesoporous TiO2 film using the dilute HNO3 solvent of pH 2 with the addition of ethylene glycol, propylene glycol and neutral surfactant.

  • PDF

Solvolysis of p-Nitrobenzyl chloride in the Ethanol-water Mixtures (Ethanol-Water 溶液內에서의 p-Nitrobenzyl Chloride의 Solvolysis)

  • Lee, Euk-Suk
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.11-14
    • /
    • 1966
  • The thermodynamic parameters for the solvolysis of the p-nitrobenzyl chloride which take place in the ethanol-water mixture media were determined. From the application of this data to the formula ${\delta}_M{\Delta}H^{\neq} = a'Y + b{\delta}_M{\Delta}S^{\leq}$ the following conclusion was obtained. The substrate constant a' for this reaction was not varied in the media which contain more than 50% alcohol and less than 50% alcohol. From this, it is clear that the mechanism of this reaction is the same both in the water-rich solvent and in the alcohol-rich solvent.

  • PDF

A Study on the Separation and Recovery of Magnesium from Waste Bittern (폐해수로부터 마그네슘의 분리.회수에 관한 연구)

  • Ju, Chang-Sik;Lee, Gyeong-Ok;Jeong, Seong-Uk;Park, Heung-Jae;Na, Seok-Eun;Jeong, Gap-Seon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.381-386
    • /
    • 2001
  • The characteristics of precipitation separation and solvent extraction separation of magnesium from the waste bittern were studied experimentally In the result of precipitation separation, the size of magnesium hydroxide precipitated was not affected on pH, but decreased with increasing the precipitation temperature. The purity of magnesium oxide precipitated was increased with pH beyond pH 11. From the solvent extraction separation, the equilibrium extraction ratio of magnesium was increased with pH and temperature of extraction phase, the concentration of stripping phase, and with decreasing pH of stripping phase. The extractant of Aliquat 336 and Acid 810 mixture was more effective than that of DCH18C6 and $D_2EHPA$ mixture in the extraction separation of magnesium.

  • PDF

Studies on Solvent Extraction Using Salphen for Separative Determination of Trace Fe(II) and Fe(III) in Water Samples

  • Kim, Eun-Jook;Kim, Young-Sang;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.99-103
    • /
    • 2008
  • Solvent extraction using salphen as a ligand has been investigated for the selective separation and determination of trace Fe(II) and Fe(III). A salphen ligand was synthesized, and solvent extraction variables, such as solution pH, the concentration of salphen, the type of organic solvent, auxiliary agents, oxidants and the effect of interference were optimized. Salphen is stable at pH 3-4, and Fe(III)-salphen complexes can be selectively extracted into an MIBK(4-methyl-2-pentanone) phase from an aqueous solution within this pH range. For the determination of the total amount of iron in 100 mL of aqueous solution, Fe(II) ions were completely oxidized using 0.05 mL of 3.5% H2O2 without side reactions. To evaluate its applicability, the proposed method was applied to determine trace Fe(II) and Fe(III) in several kinds of water samples. Reproducible results were obtained with RSD of less than 3.0%, and the recoveries for this reliability were obtained with 91-112%.

Experimental Study on the pH of Recycled Aggregate (순환골재의 pH에 관한 실험적 연구)

  • Kim, Dae-Bong;Kim, Jong-Hwan;Park, Je-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • This study provides basic materials about setting pH standard of recycle aggregate by analysing pH change from elution time, type of solvent and ratio of solvent with existing experiment methods about recycle aggregate. Also it has purpose of evaluating impact of recycle aggregate outflow's pH on actual environment by building a model that is similar to condition of recycling recycle aggregates. pH of recycle aggregates seemed to not change a lot by time with each experimental method. To evaluate degree of generation by recycle aggregates in natural state, natural water with distilled water seemed be useful to use as solvent. Also it was possible to confirm that there is a difference between actual pollution in natural state by only pH of recycle aggregates.

Dependence of the Morphology of Hydroxyapatite on pH and Solvent Species (용액의 산도 및 용매의 종류에 따른 수산화인회석의 형태 변화 연구)

  • Kim, Youngyon;Kwon, Ki-Young
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.543-545
    • /
    • 2016
  • Four different hydroxyapatites (HAP) were prepared by a solvothermal method under different pHs and solvent species. The synthesized hydroxyapatites were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Four HAPs exhibited similar XRD patterns regardless of synthetic conditions. However, the morphology of hydroxyapatites was dependent of pH and solvent species under synthetic condition. The HAP prepared in pH 12 showed an elongated shape along the [001] direction compared to that prepared in pH 8. Also, the morphology of the HAPs synthesized in the presence of methanol and ethanol exhibited the more elongated hexagonal rod shape along the [001] direction with the high aspect ratio.

Impact of Solvent pH on Direct Immobilization of Lysosome-Related Cell Organelle Extracts on TiO2 for Melanin Treatment

  • Bang, Seung Hyuck;Kim, Pil;Oh, Suk-Jung;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.718-722
    • /
    • 2015
  • Techniques for immobilizing effective enzymes on nanoparticles for stabilization of the activity of free enzymes have been developing as a pharmaceutical field. In this study, we examined the effect of three different pH conditions of phosphate buffer, as a dissolving solvent for lysosomal enzymes, on the direct immobilization of lysosomal enzymes extracted from Hen's egg white and Saccharomyces cerevisiae. Titanium(IV) oxide (TiO2) nanoparticles, which are extensively used in many research fields, were used in this study. The lysosomal enzymes immobilized on TiO2 under each pH condition were evaluated to maintain the specific activity of lysosomal enzymes, so that we can determine the degree of melanin treatment in lysosomal enzymes immobilized on TiO2. We found that the immobilization efficiency and melanin treatment activity in both lysosomal enzymes extracted from Hen's egg white and S. cerevisiae were the highest in an acidic condition of phosphate buffer (pH 4). However, the immobilization efficiency and melanin treatment activity were inversely proportional to the increase in pH under alkaline conditions. In addition, enhanced immobilization efficiency was shown in TiO2 pretreated with a divalent, positively charged ion, Ca2+, and the melanin treatment activity of immobilized lysosomal enzymes on TiO2 pretreated with Ca2+ was also increased. Therefore, this result suggests that the immobilization efficiency and melanin treatment activity of lysosomal enzymes can be enhanced according to the pH conditions of the dissolving solvent.