• Title/Summary/Keyword: solvent analysis

Search Result 1,351, Processing Time 0.026 seconds

Solvation in Mixed Solvent (III). Solvatochromic Analysis for the Solvent Effect of Binary Mixed Solvent (혼합용매에서의 용매화 (제3보). 이성분 혼합용매 중에서 용매효과에 대한 분광용매화 분석)

  • Lee, Ik-Choon;La, Sang-Mu;Lee, Bon-Su;Sohn, Se-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.210-216
    • /
    • 1984
  • Solvatochromic comparison methods were applied to determine Taft's solvent parameters, ${\pi}^{\ast}$(solvent polarity-polarizability), ${\alpha}$(solvent hydrogen bond donor acidity) and ${\beta}$ (solvent hydrogen bond acceptor basicity) for MeOH-MeCN solvent mixtures. Swain's solvent parameters A(anion solvation scale) and B(cation solvation scale) were also determined by least square fitting of kinetic data in the same binary solvent mixtures. It was found that: (i)${\beta}$ depends on the basicity of the solvent and increases with the MeOH content owing to the increase in polymeric structure of methanol; (ii) ${\pi}^{\ast}$depends on the dipole moment of the solvent and increases with the MeCN content of the solvent; (iii) ${\alpha}$ increases rapidly with the MeOH content as the hydrogen bond donor acidity of the solvent mixtures increases. Taft's reaction constants a and s and Swain's reaction constants a and b were determined for the reactions reported from our laboratory previously using solvent parameters determined in this work. No meaningful inter-relationship was found between the two set of reaction parameters, but a good linear correlation was found between the ratios a/s and a/b. Solvent effect on the reaction mechanism, substituent effect and leaving group ability were examined in the light of these reaction constants ratios.

  • PDF

Gene Identification and Molecular Characterization of Solvent Stable Protease from A Moderately Haloalkaliphilic Bacterium, Geomicrobium sp. EMB2

  • Karan, Ram;Singh, Raj Kumar Mohan;Kapoor, Sanjay;Khare, S.K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • Cloning and characterization of the gene encoding a solvent-tolerant protease from the haloalkaliphilic bacterium Geomicrobium sp. EMB2 are described. Primers designed based on the N-terminal amino acid sequence of the purified EMB2 protease helped in the amplification of a 1,505-bp open reading frame that had a coding potential of a 42.7-kDa polypeptide. The deduced EMB2 protein contained a 35.4-kDa mature protein of 311 residues, with a high proportion of acidic amino acid residues. Phylogenetic analysis placed the EMB2 gene close to a known serine protease from Bacillus clausii KSM-K16. Primary sequence analysis indicated a hydrophobic inclination of the protein; and the 3D structure modeling elucidated a relatively higher percentage of small (glycine, alanine, and valine) and borderline (serine and threonine) hydrophobic residues on its surface. The structure analysis also highlighted enrichment of acidic residues at the cost of basic residues. The study indicated that solvent and salt stabilities in Geomicrobium sp. protease may be accorded to different structural features; that is, the presence of a number of small hydrophobic amino acid residues on the surface and a higher content of acidic amino acid residues, respectively.

Quantitative analysis of 5-HMF produced from fructose (과당에서 전환된 5-HMF(5-hydroxymethylfurfural)의 정량적 분석)

  • Sim, Jaehoon;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • Quantitative analysis of 5-hydroxymethylfufural (5-HMF) conversion from fructose by dehydration and rearrangement was investigated by $^1H$-NMR spectroscopic method. Fructose was converted to 5-HMF in dimethylsulfoxide (DMSO)-$d^6$ or acidic deuterium hydroxide at controlled reaction temperature and time. With addition of internal standards (biphenyl for DMSO-$d^6$ solvent, and 2,5-dihydroxybenzoic acid for deuterium oxide solvent), conversion from fructose to 5-HMF was analyzed by $^1H$-NMR spectroscopy. Quantitative analysis was run by comparison with peak area integration between of 5-HMF and internal standard. In DMSO solvent, 5-HMF was stable end product but part of 5-HMF was converted to formic and levulinic acid at acidic aqueous medium.

A Studies on the Surface Morphology and Fine Structure of PET Film Treated by DMF (DMF로 처리된 PET Film의 표면모폴로지와 미세구조에 대한 연구)

  • 서은덕
    • Textile Coloration and Finishing
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • As a simulation of solvent-assisted dyeing, the solvent effects on the structure of polyethylene terephthalate(PET) film treated by dimethylformamide(DMF) were investigated. The effects were evaluated by the atomic force microscopy(AFM) topographical changes and FT-IR spectrum analysis. PET films treated with DMF at $70^{\circ}C$ for several different treatment time(20, 40, and 60 min). AFM topography showed that, with increasing treatment time by DMF, PET surfaces became smooth due to the swelling phenomenon and the rigid structure changed into flexible state which was contributed to increase the surface area of PET films. FT-IR spectrum analysis showed that DMF and molecular chains of PET interacted each other via their polar carbonyl groups and that DMF also affected the out-of-plane bending vibration mode of phenyl ring of PET.

A Crystal Type Conversion Study of HNS(Hexanitrostilbene) (HNS(Hexanitrostilbene)의 결정 전환 연구)

  • 강정부;구본탁;이경희;임영권
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.216-224
    • /
    • 2001
  • HNS(hexanitrostilbene), one of the most important heat resistant explosive was recrystallized using organic solvent, nitric acid and dual solvent system of acetonitrile-toluene. The purification, analysis, type conversion method and its physical properties are described.

  • PDF

An NMR Study of Solvent Interactions in a Paramagnetic System

  • Golding, R.M.;Pascual, R.O.;Suvanprakorn, C.;Dance, I.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1752-1756
    • /
    • 2006
  • This study explores and interprets in a new way the complex solvent and the temperature dependence of the NMR shifts for the N-$CH_2$ protons in tris(N,N-diethyldithiocarbamato) iron(III) in acetone, benzene, carbon disulfide, chloroform, dimethylformamide and pyridine. The NMR shifts are interpreted in terms of the Fermi contact interaction and the dipolar term from the multipole expansion of the interaction of the electron orbital angular momentum and the electron spin dipolar-nuclear spin angular momentum. This analysis yields a direct measure of the effect of the solvent system on the environment of the transition metal ion. The results are analysed in terms of the crystal field environment of the transition metal ion with contributions from (a) the dithiocarbamate ligand (b) the solvent molecules and (c) the interaction of the effective dipole moment of the polar solvent molecule with the transition metal ion complex.

Studies on Solvent Extraction and Flotation Technique Using Metal-Dithizone Complexes(II). Determination of Trace Elements in Water Samples by Solvent Sublation

  • 김영상;최윤석;최희선
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1036-1042
    • /
    • 1998
  • The preconcentration and determination of trace elements in water samples were studied by a solvent sublation utilizing dithizonate complexation. After metal dithizonates were formed, trace amounts of cadmium, cobalt, copper and lead were floated and extracted into small volume of a water-immiscible organic solvent on the surface of sample solution and determined in the solvent directly by GF-AAS. Several experimental conditions as formation condition of metal-dithizonate complexes, pH of solution, amount of dithizone, stirring time, the type and amount of surfactants, N2 bubbling rate and so on were optimized for the complete formation and effective flotation of the complexes. And also four kinds of light solvents were compared each other to extract the floated complexes, effectively. After the pH was adjusted to 4.0 with 5 M HNO3, 8.0 mL of 0.05% acetone solution of dithizone was added to 1.00 L water sample. The dithizonate complexes were flotated and extracted into the upper methyl isobutylketone (MIBK) layer by the addition of 2.0 mL 0.2% ethanolic sodium lauryl sulfate solution and with the aid of small nitrogen gas bubbles. And this solvent sublation method was applied to the analysis of real water samples and good results of more than 85% recoveries were obtained in spiked samples.

A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior (리튬이온전지의 유기용매분해에 따른 SEI film 형성과 전기화학적 거동에 관한 연구)

  • Kim, Min-Seong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M $LiPF_6$ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M $LiPF_6$ DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M $LiPF_6$ EC/DEC(1/2 by vol%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC,DMC and EMC brought the de-decomposition peak of salt anion of $PF_6$ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. $Li/Li^+$). In addition, a kinetics current peak, in which intercalation of Lt is proceeded at 750mV, 450mV(vs. $Li/Li^+$), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance($R_{ct}$) according to the electric potential of $Li^+$ intercalation at 750mV(vs. $Li/Li^+$), which was the same as the resistance ($R_f$) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance($R_p$) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior (리튬이온전지의 유기용매분해에 따른 SEI film형성과 전기화학적 거동에 관한 연구)

  • 김민성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M LiPF$\sub$6/ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M LiPF$\sub$6/DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M LiPF$\sub$6/ EC/DEC(1/2 by vo%%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC, DMC and EMC brought the de-decomposition peak of salt anion of PF$\sub$6/$\^$-/ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. Li/Li$\^$+/\`). In addition, a kinetics current peak, in which intercalation of Li$\^$+/ is proceeded at 750mv, 450mv(vs. Li/Li$\^$+/), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance(R$\sub$ct/) according to the electric potential of Li$\^$+/ intercalation at 750mv(vs. Li/Li$\^$+/), which was the same as the resistance (R$\sub$f/) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance(R$\sub$p/) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

Conception Analysis of Students, Pre-service Teachers and Chemistry Teachers on Boiling Point Elevation (끓는점 오름 현상에 대한 학생, 예비교사, 화학교사의 개념 분석)

  • Yoon, Hee-Sook;Jeong, Dae-Hong
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.7
    • /
    • pp.805-812
    • /
    • 2006
  • In this study the description patterns of chemistry textbooks on the boiling point elevation phenomenon and the understanding patterns of high school students, pre-service teachers and chemistry teachers were investigated. High school chemistry II textbooks developed in the 6th and 7th national curricula were analyzed and the conception patterns of subjects on this phenomenon were categorized using a questionnaire developed for this study. The description patterns of science textbooks were classified into three: 'decreasing of surface solvent molecules', 'attraction force between solvent and solute molecules' and 'decreasing of surface solvent molecules and attraction force between solvent and solute molecules'. In the result of the conception analysis, the ratio of 'attraction force between solvent and solute molecules' was high among students, pre-service teachers, and chemistry teachers. There was a propensity that they would like to explain the boiling point elevation in terms of enthalpy rather than entropy, and in order to analyze this propensity, follow-up interviews were carried out.