• 제목/요약/키워드: solution-deposition

검색결과 864건 처리시간 0.027초

Textured Ni 기판 위에 YBCO coated conductor 모재용 NiO 완충층 제조 (Fabrication of NiO buffer film on textured Ni substrate for YBCO coated conductor)

  • Sun, Jong-Won;Kim, Hyoung-Seop;Jung, Choon-Ghwan;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • 제3권1호
    • /
    • pp.125-129
    • /
    • 2001
  • NiO buffer layers were deposited on texture Ni tapes fur YBCO coated conductors by MOCVD(metal organic chemical vapor deposition) method, using a single solution source. Variables were deposition temperature and flow rate of $0_2$carrier gas. At higher temperatures, The NiO(111) texture was well developed, but the NiO(200) texture was developed at low temperatures. The best result was obtained at the deposition temperature of$ 470^{\circ}C$ and the gas flow rate of 200 sccm. FWHM value of $\omega$-scan fur NiO(200) of the film and $\Phi$-scan for NiO(111) of the film was $4.2^{\circ}$ and $7^{\circ}$, respectively.

  • PDF

Aerosol Flame Deposition법을 이용한 광도파로용 Borophosphosilicate 유리박막의 제작에 관한 연구 (Fabrication of Borophosphosilicate Glass Thin Films for Optical Waveguides Using Aerosol Flame Deposition Method)

  • 이정우;정형곤;김병훈;장현명;문종하
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.77-81
    • /
    • 2000
  • Silica glass films to utilize optical waveguides was fabricated by Aerosol Flame Deposition(AFD) method. As the amount of B2O3 increased in the sol solution of (92-x)SiO2-xB2O3-8P2O5, the thermophoretic deposition rate onto Si substrate was markedly lowered due to vaporizing out of B2O3 and P2O5 during the vaporization and reaction of the aerosol in the flame. GeO2 was added to 62SiO2-30B2O3-8P2O5 in order to control easily the refractive index of glass films. As the amount of GeO2 increased from 2 to 12 wt%, its refractive index increased from 1.4633 up to 1.4716.

  • PDF

Barium titanate doping on superconducting perovskite YBCO

  • Soh, Deaw-Ha;Korobova, N.;Li, Ying-Mei;Cho, Yong-Joon;Kim, Tae-Wan
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.120-123
    • /
    • 2000
  • This paper reports a newly developed sol-gel process to synthesize dense YBCO thick films with $BaTiO_3$ additives using electrophoretic deposition and metal alkoxide sol/particle suspension, which we successfully produce dense $YBCO+BaTiO_3$ ceramics at a rather low temperature, compared with the sintering temperature used in conventional methods. The thick films of HTS were prepared by electrophoretic deposition, using pre-sintered powder with barium titanate addition in the form of $BaTi(OR)_6$ solution in suspension for electrophoresis. The conditions for applied voltage and deposition times for electrophoretic deposition of HTS thick films were studied in detail.

  • PDF

Epitaxial Growth of Polyurea Film by Molecular Layer Deposition

  • 최성은;강은지;이진석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.264.2-264.2
    • /
    • 2013
  • Molecular layer deposition (MLD) is sequential, self-limiting surface reaction to form conformal and ultrathin polymer film. This technique generally uses bifunctional precursors for stepwise sequential surface reaction and entirely organic polymer films. Also, in comparison with solution-based technique, because MLD is vapor-phase deposition based on ALD, it allows epitaxial growth of molecular layer on substrate and is especially good for surface reaction or coating of nanostructure such as nanopore, nanochannel, nanwire array and so on. In this study, polyurea film that consisted of phenylenediisocyanate and phenylenediamine was formed by MLD technique. In situ Fourier Transform Infrared (FTIR) measurement on high surface area SiO2 substrate was used to monitor the growth of polyurethane and polyurea film. Also, to investigate orientation of chemical bonding formed polymer film, plan-polarized grazing angle FTIR spectroscopy was used and it showed epitaxial growth and uniform orientation of chemical bones of polyurea films.

  • PDF

황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구 (A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe)

  • 이응조;노재호
    • 한국표면공학회지
    • /
    • 제22권3호
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF

HIGH-THROUGHPUT PROCESS FOR ATOMIC LAYER DEPOSITION

  • Shin, Woong-Chul;Choi, Kyu-Jeong;Baek, Min;Kim, Mi-Ry
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.23.2-23.2
    • /
    • 2009
  • Atomic layer deposition (ALD)have been proven to be a very attractive technique for the fabrication of advanced gate dielectrics and DRAM insulators due to excellent conformality and precise control of film thickness and composition, However, one major disadvantages of ALD is its relatively low deposition rate (throughput) because the deposition rate is typically limited by the time required for purging process between the introduction of precursors. In order to improve its throughput, many efforts have been made by commercial companies, for example,the modification reactor and development of precursors. However, any promising solution has not reported to date. We developed a new concept ALD system(Lucida TM S200) with high-throughput. In this process, a continuous flow of ALD precursor and purging gas are simultaneously introduced from different locations in the ALD reactor. A cyclic ALD process is carried out by moving the wafer holder up and down. Therefore, the time required for ALD reaction cycle is determined by speed of the wafer holder and vapor pressure of precursors. We will present the operating principle of our system and results of deposition.

  • PDF

Organic fouling in forward osmosis (FO): Membrane flux behavior and foulant quantification

  • Xia, Shengji;Yao, Lijuan;Yang, Ruilin;Zhou, Yumin
    • Membrane and Water Treatment
    • /
    • 제6권2호
    • /
    • pp.161-172
    • /
    • 2015
  • Forward osmosis (FO) is an emerging membrane technology with potential applications in desalination and wastewater reclamation. The osmotic pressure gradient across the FO membrane is used to generate water flux. In this study, flux performance and foulant deposition on the FO membrane were systematically investigated with a co-current cross-flow membrane system. Sodium alginate (SA), bovine serum albumin (BSA) and tannic acid (TA) were used as model foulants. Organics adsorbed on the membrane were peeled off via oscillation and characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). When an initial flux of $8.42L/m^2h$ was applied, both flux reduction and foulant deposition were slight for the feed solution containing BSA and TA. In comparison, flux reduction and foulant deposition were much more severe for the feed solution containing SA, as a distinct SA cake-layer was formed on the membrane surface and played a crucial role in membrane fouling. In addition, as the initial SA concentration increased in FS, the thickness of the cake-layer increased remarkably, and the membrane fouling became more severe.

초음파분무법에 의해 제작된 $SnO_2(:F)$ 박막의 특성 (Properties of fluorine-doped $SnO_2$ films prepared by the ultrasonic spray deposition)

  • Byung Seok Yu;Sei Woong Yoo;Jeong Hoon Lee
    • 한국결정성장학회지
    • /
    • 제4권3호
    • /
    • pp.294-305
    • /
    • 1994
  • 초음파 분무법에 의한 $SnO_2(:F)$박막의 제막시 DBDA와 $SnCl_4.5H_2O$를 출발물질로 사용하은 경우 제막조건이 전기적, 광학적 그리고 표면형상 드의 특성에 미치는 영향에 대해 조사하였다. 박막의 비저항은 출발물질에 관계없이 용액내의 F/Sn의 비가 0.6일 때까지는 급격히 증가하였으며, $SnO_2.5H_2O$를 출발물질로 사용한 경우 DBDA의 경우보다 낮았다. 용액내의 F/Sn의 비가 1일 때 출발물질로서, $SnO_2.5H_2O$과 DBDA를 사용한 경우 광투과율은 각각 83%와 85%로서 DBDA 사용한 경우가 다소 높았다.

  • PDF

초음파 분무 열분해 증착 제어 시스템 개발 (Development of Control System for Ultrasonic Spray Pyrolysis Deposition)

  • 김규언;김영흠;이치범
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.385-391
    • /
    • 2014
  • A control system for ultrasonic spray pyrolysis deposition was developed that can coat a large size glass panel with a transparent conductive oxide. It consists of several ultrasonic atomizer devices to cover a large area and a host computer for individually controlling the devices. The sub-controller in an ultrasonic atomizer device can adjust the flow rate of the atomized conductive oxide gas by setting the flow rate of the solution and regulating the level of the solution in the tank. To construct a feedback control loop for level regulation, a level sensor that utilized an infrared distance sensor and an electric circuit for adjusting the ultrasonic oscillator were developed. The host program was also developed, which can monitor and control the sub-controllers. A proportional-integral controller was developed for a simplified model, and its operation was verified through an experiment.

Fabrication of EDM Electrodes by Localized Electrochemical Deposition

  • Habib, Mohammad Ahsan;Gan, Sze Wei;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.75-80
    • /
    • 2008
  • The fabrication of complex three-dimensional electrodes for micro electrical discharge machining (micro-EDM) is an important issue in the field of micromachining Localized electrochemical deposition (LECD) is a simple and inexpensive technique for fabricating micro-EDM electrodes. This study presents a new process for manufacturing electrodes with complex cross-sections using masks of different shapes, In this process, a non-conductive mask is placed between an anode and cathode that are immersed in a plating solution of acidified copper sulfate. The LECD is achieved by applying a pulsed voltage between the anode and cathode, which are separated by a small distance. In this setup, the cathode is placed above the anode and the mask, so that the deposited electrode can be used directly for EDM without changing the tool orientation. We found that the microstructure of the deposited electrode is influenced by the concentration of the plating solution and organic additives. Moreover, the values of the voltage, frequency, and duty cycle of the pulsed input have significant effects on the microstructure of the fabricated electrode. Finally, the optimum values of the voltage, frequency, and duty cycle were determined for the most effective fabrication of complex-shaped electrodes.