• Title/Summary/Keyword: solution leakage

Search Result 402, Processing Time 0.027 seconds

Development of Direct Metal Tooling (DMT) Process for Injection Mold Core with Curved Conformal Cooling Channel (곡선형 형상적응형 냉각채널을 갖는 금형 코어 제작을 위한 DMT 공정개발)

  • Han, Ji Su;Yu, Man Jun;Lee, Min Gyu;Lee, Yoon Sun;Kim, Woo-Sung;Lee, Ho Jin;Kim, Da Hye;Sung, Ji Hyun;Cha, Kyoung Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.103-108
    • /
    • 2019
  • The cooling rate and the uniformity of mold temperature, in the injection molding process, possess great influences on the productivity and quality of replications. The conformal cooling channel, which is of a uniform spacing from the mold cavity by the metal additive manufacturing process, receives much attention recently. The purpose of this study is to develop a mold core with a curved conformal cooling channel for a pottery-shaped thick-wall cosmetic container through the hybrid method of direct metal tooling (DMT) process. In this study, we design a mold core that contains the curved cooling channel for the container. A method that divides the cavity is proposed and the DMT process is carried out to form the curved cooling channel. The test mold core, with the curved conformal cooling channel, has been fabricated by the proposed method to confirm the feasibility of the design concept. We show that no leakage is observed for the additive manufactured test mold core, and its physical properties demonstrate that it can be sufficiently used as the injection mold core.

A Field Study of Surfactant Enhanced In-Situ Remediation using Injection Wells and Recovery Trench at a Jet Oil Contaminated Site (항공유 오염 지역에서 주입정과 회수트렌치를 이용한 원위치 토양세정법 현장 적용)

  • Lee, Gyu-Sang;Kim, Yang-Bin;Jang, Jae-Sun;Um, Jae-Yeon;Song, Sung-Ho;Kim, Eul-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.13-21
    • /
    • 2012
  • This study reports a surfactant-enhanced in-situ remediation treatment at a test site which is located in a hilly terrain. The leakage oils from a storage tank situated on the top of the hill contaminated soils and groundwater in the lower elevation. Sixteen vertical injection wells (11 m deep) were installed at the top of the hill to introduce 0.1-0.5 vol.% of non-ionic Tween-80 surfactant. The contaminated area that required remediation treatment was about $1,650\;m^2$. Two cycles of injecting surfactant solution followed by water were repeated over approximately 7.5 months: first cycle with 0.5 month of surfactant injection followed by 3 months of water injection, and second cycle with 1 month of surfactant followed by 3 months of water injection. The seasonal fluctuation in groundwater table was also considered in the selection of periods for surfactant and water injection. The results showed that the initial Total Petroleum Hydrocarbon (TPH) concentration of 1,041 mg/kg (maximum 3,605 mg/kg) was reduced significantly down to 76.6 mg/kg in average. After 2nd surfactant injection process finished, average TPH concentration of soils was reduced to 7.5% compared to initial concentration. Also, average BTEX concentration of soils was reduced to 10.8%. This resultes show that the surfactant enhanced in-situ remediation processes can be applicable to LNAPL contaminated site in field scale.

Development of Gas Leak Detecting System Based on Quantum Technology (양자기술기반 가스 누출 감지 시스템 개발)

  • Kwon, Oh Sung;Park, Min Young;Ban, Changwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.57-62
    • /
    • 2021
  • Gas is an energy source widely used in general households and industrial sites, and is also a process material widely used in petrochemical and semiconductor processes. However, while it is easy to use, it can cause large-scale human damage due to leakage, explosion, and human inhalation. Therefore, a gas facility safety management solution that can be safely used at home and industrial sites is essential. In particular, the need to develop advanced gas safety solutions is emerging as gas facilities are aging. In this paper, a technology was developed to measure the presence and concentration of gas leaks from a distance by irradiating photons, the minimum energy unit that can no longer be divided into gas facilities, and analyzing the number of reflected photons. This overcomes technical limitations such as short detection distance and inability to detect fine leaks, which are the limitations of conventional electric/chemical gas sensors or infrared-based gas leak detectors.

Oil/Water Separation Technology by MXene Composite Membrane: A Review (MXene 복합막에 의한 기름/물 분리 기술: 총설)

  • Lee, Byunghee;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.304-314
    • /
    • 2021
  • Climate change results in unusual weather pattern and affects annual rain fall severely. At the same time, growing industrialization leads to higher energy demand and leakage from petrochemical industry and tanker leads to water pollution. In this scenario, finding out solution to generate clean water is highly essential. For oil/water separation, there are several methods available such as chemical precipitation and adsorption but membrane separation technique is considered to be a more cost and energy efficient process. Amphiphilicity nature of membrane are enhanced by making composite membrane with 2D material such as MXene, resulting in good electrical conductivity and hydrophilicity. This review is mainly classified into two sections: pure MXene and modified MXene. A variety of polymer is used to prepare composite membranes and MXene is modified to further enhance the properties suitable for particular applications.

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Implimentation of Smart Farm System Using the Used Smart Phone (중고 스마트폰을 활용한 스마트 팜 시스템의 구현)

  • Kwon, Sung-Gab;Kang, Shin-Chul;Tack, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1524-1530
    • /
    • 2018
  • In this paper, we designed a product that can prevent environmental pollution, waste of resources, and leakage of foreign currency by commercializing a green IT solution by merging a used smart phone with the IoT object communication technology for the first time in the world. For the experiment of the designed system, various performance and communication condition was experimented by installing it in the actual crop cultivation facility. As a result, when a problem occurs, the alarm sound and video notification are generated by the user's smart phone, and remote control of various installed devices and data analysis in real time are possible. In this study, it is thought that the terminal management board developed for the utilization of the used smart phone can be applied to various fields such as agriculture and environment.

Main/Sub Device Authentication and Authorization Protocol in Ubiquitous Office Network (유비쿼터스 오피스 네트워크에서의 Main/Sub 디바이스 인증/인가 프로토콜)

  • Moon, Jong-Sik;Lee, Im-Yeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.5
    • /
    • pp.105-118
    • /
    • 2009
  • In modern society, as the rapid development of IT technology combined with the computer-based high-speed communication networks makes it possible to provide a wide spectrum of services and devices, we have been confronting a new cultural transformation era, referred to as the information society. However, the requirements to be considered in security aspect have became more complicated and diversified, and there remains the same security weaknesses as in the existing media or protocol. Particularly, the office network device with roaming is susceptible to the different kinds of attacks such as terminal hacking, virus attacks, and information leakage because the computing capacity is relatively low and the loading of already developed security functions is difficult. Although developed as one solution to this problems, PKI security authentication technology isn't suitable for multi-domain environments providing uonments proffice network service, and so the development of a novel authentication system is needed. Therefore, in this paper researched the roaming and device authentication/auth for multitechnology using an ID-based public key, authorization ticket, and Sub-device ticket with a purpose to contribute to the development of the secured and efficient technology.

Anonymous Qualification Verifying Method on Web Environment (웹 환경에서 익명성을 제공하는 자격증명 방법)

  • Lee, Yun-Kyung;Hwang, Jung-Yeon;Chung, Byung-Ho;Kim, Jeong-Nyeo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.5
    • /
    • pp.181-195
    • /
    • 2011
  • There's a controversy about an invasion of privacy which includes a leakage of private information and linking of user's behavior on internet. Although many solutions for this problem are proposed, we think anonymous authentication, authorization, and payment mechanism is the best solution for this problem. In this paper, we propose an effective anonymity-based method that achieves not only authentication but also authorization. Our proposed method uses anonymous qualification certificate and group signature method as an underlying primitive, and combines anonymous authentication and qualification information. An eligible user is legitimately issued a group member key pair through key issuing process and issued some qualification certificates anonymously, and then, he can take the safe and convenience web service which supplies anonymous authentication and authorization. The qualification certificate can be expanded according to application environment and it can be used as payment token.

Simple Precoding Scheme Considering Physical Layer Security in Multi-user MISO Interference Channel (다중 사용자 MISO 간섭 채널에서 물리 계층 보안을 고려한 간단한 프리코딩 기법)

  • Seo, Bangwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.10
    • /
    • pp.49-55
    • /
    • 2019
  • In this paper, we propose a simple precoding vector design scheme for multi-user multiple-input single-output (MISO) interference channel when there are multiple eavesdroppers. We aim to obtain a mathematical closed-form solution of the secrecy rate optimization problem. For this goal, we design the precoding vector based on the signal-to-leakage plus noise ratio (SLNR). More specifically, the proposed precoding vector is designed to completely eliminate a wiretap channel capacity for refraining the eavesdroppers from detecting the transmitted information, and to maximize the transmitter-receiver link achievable rate. We performed simulation for the performance investigation. Simulation results show that the proposed scheme has better secrecy rate than the conventional scheme over all signal-to-noise ratio (SNR) range even though the special condition among the numbers of transmit antennas, transmitter-receiver links, and eavesdroppers is not satisfied.

Development of an Integrated Quarantine System Using Thermographic Cameras (열화상 카메라를 이용한 통합 방역 시스템 개발)

  • Jung, Bum-Jin;Lee, Jung-Im;Seo, Gwang-Deok;Jeong, Kyung-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • The most common symptoms of COVID-19 are high fever, cough, headache, and fever. These symptoms may vary from person to person, but checking for "fever" is the government's most basic measure. To confirm this, many facilities use thermographic cameras. Since the previously developed thermographic camera measures body temperature one by one, it takes a lot of time to measure body temperature in places where many people enter and exit, such as multi-use facilities. In order to prevent malfunctions and errors and to prevent sensitive personal information collection, this research team attempted to develop a facial recognition thermographic camera. The purpose of this study is to compensate for the shortcomings of existing thermographic cameras with disaster safety IoT integrated solution products and to provide quarantine systems using advanced facial recognition technologies. In addition, the captured image information should be protected as personal sensitive information, and a recent leak to China occurred. In order to prevent another case of personal information leakage, it is urgent to develop a thermographic camera that reflects this part. The thermal imaging camera system based on facial recognition technology developed in this study received two patents and one application as of January 2022. In the COVID-19 infectious disease disaster, 'quarantine' is an essential element that must be done at the preventive stage. Therefore, we hope that this development will be useful in the quarantine management field.