• Title/Summary/Keyword: solution coating method

Search Result 549, Processing Time 0.032 seconds

Morphology Control of ZnO Nanorods on ITO Substrates in Solution Processes (습식공정 기반 ITO 기판 위 산화아연 나노로드 모폴로지 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Jeong, Soon-Wook;Lee, Sang-Woo;Kim, Sang-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.987-991
    • /
    • 2009
  • We report growth of vertically well-aligned zinc oxide (ZnO) nanorods on indium-tin oxide (ITO)/glass substrates using a simple aqueous solution method at low temperature via control of the ZnO seed layer morphology. ZnO nanoparticles acting as seeds are pre-coated on ITO-coated glass substrates. by spin coating to control distribution and density of the ZnO seed nanoparticles. ZnO nanorods were synthesized on the seed-coated substrates in a dipping process into a main growth solution. It was found that the alignment of ZnO nanorods can be effectively manipulated by the spin-coating speed of the seed layer. A grazing incidence X-ray diffraction pattern shows that the ZnO seed layer prepared using the higher spin-coating speed is of uniform seed distribution and a flat surface, resulting in the vertical growth of ZnO nanorods aligned toward the [0001] direction in the main growth process.

Material and rheological properties of (glycidoxypropyl) trimethoxysilane modified colloidal silica coatings

  • Kang Hyun Uk;Park Jung Kook;Kim Sung Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • Colloidal coating solution was prepared to enhance the hydrophilic property of the film surface. Water and ethanol were used as the dispersion media and (glycidoxypropyl) trimethoxysilane (GPS) as a binder in the colloidal silica coatings. Ethylene diamine was added to the colloidal silica solution as the curing agent. The colloidal silica solution was regarded as a hard-sphere suspension model with low volume fraction of the silica particles. Rheological properties of the silica suspensions modified with GPS have been investigated as a function of pH and concentration. The acidic solution showed high viscosity change by fast hydrolysis reaction and adsorption of the organic binders on the surface of silica particles. However, the hydrolysis was slow at the basic condition and the binders combined with themselves by condensation. The viscosity change was smallest at pH 7. The viscosity increased with the curing time after adding ethylenediamine, and the increase of viscosity at low pH was higher than that at high pH. The hydrophilic properties of the coating film were investigated by the contact angle of water and film surface. The smallest contact angle was shown under the strong acidic condition of pH 2.

Fabrication and Properties of $VF_2$-TrFE/Si(100) Structure by using Spin Coating Method (Spin Coating 법을 이용한 $VF_2$-TrFE/Si(100) 구조의 제작 및 특성)

  • Lee, Woo-Seok;Jeong, Sang-Hyun;Kwak, No-Won;Kim, Ga-Ram;Yun, Hyeong-Sun;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.115-116
    • /
    • 2008
  • The ferroelectric vinylidene fluoride-trifluoroethylene ($VF_2$-TrFE) and $Al_2O_3$ passivation layer for the Metal/Insulator/Ferroelectric/Semiconductor (MIFS) structure were deposited using spin coating and remote plasma atomic layer deposition (RPALD), respectively. A 2.5 ~ 3 wt % diluted solution of purified vinylidene fluoride-trifluoroethylene ($VF_2$: TrFE=70:30) in a DMF solution were prepared and deposited on silicon wafer at a optimized spin speed. After annealing in a vacuum ambient at 150 ~ $200^{\circ}C$ for 60 min, upper insulator layer were deposited at temperature ranging from 100 ~ $150^{\circ}C$ by RPALD. We described electrical and structural properties of MIFS fabricated by spin coating and RPALD methods.

  • PDF

Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel (아연 전기 도금 강의 환경친화적인 화성처리 기술 개발)

  • Kim, Seong-Jong;Kim, Jeong-Il;Jang, Seok-Ki
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

Flexible Dye-sensitized Solar Cells by a Low-temperature Sintering Method (저온소결법에 의한 플렉시블 염료감응 태양전지)

  • Baek, Ji-Hye;Kim, Joo-yong;Kang, Wee-Kyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.320-322
    • /
    • 2007
  • A new binder-free $TiO_{2}$ paste was prepared by common ion applying effect, enabling low temperature fabrication required for flexible solar cells. The binder-free and high viscosity $TiO_{2}$ coating solution was produced by adding 7.5% aniline in $TiO_{2}$ colloid solution obtained from the high pressure water-heat response method. The resulting pastes had high level of viscosities proper for optimal coating and thus revealed excellent performances in terms of thickness uniformity and I-V characteristics.

  • PDF

Electrical Properties and Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method

  • Lee, Sunwoo;Jung, Nak-Chun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.256-256
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process. Charge accumulation and resulting electric field generation mechanism by spray coating method were shown in Fig. 1. The capacitance of the CNT/PVDF films increased by adding CNTs into the PVDF matrix, and finally saturated. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0~4 wt%. Therefore we can control the performance of the devices fabricated from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

  • PDF

Development of a Coating Machine for Making Automotive Seat Covers

  • Park, Hong-Seok;Dang, Xuan-Phuong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.267-272
    • /
    • 2017
  • Automotive seat covers with olefin film imported from foreign companies exhibit some problems such as low peeling strength and high burning rate. The traditional manufacturing process requires gas flame or direct heating for the laminating step. This paper introduces an alternative solution that replaces the olefin film and flame lamination method in making automotive seat covers or interior fabrics. We adopt a new manufacturing concept that applies a water-based resin coating to develop a coating system. The coating machine was successfully developed and tested. Results are intended to contribute to improving the quality and productivity of automotive seat cover production.

A Numerical Study on Combined Solution and Evaporation during Spin Coating Process (Wafer Spin Coating 공정에서 증발과 용액이 박막 형성에 미치는 영향에 관한 연구)

  • 노영미;임익태;김광선
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 2003
  • The fluid flow, mass transfer, heat transfer and film thickness variation during the spin coating process are numerically studied. The model is said to be I-dimensional because radial variations in film thickness, concentration and temperature are ignored. The finite difference method is employed to solve the equations that are simplified using the similarity transformation. In early time, the film thinning is due to the radial convective outflow. However that slows during the first seconds of spinning so the film thinning due to evaporation of solvent becomes sole. The time varing film thickness is analyzed according to the wafer spin speed, the various solvent fraction in the coating liquid, and the various solvent vapor fraction in the bulk of the overlying gas during the spin coating is estimated.

  • PDF

Smooth and uniform coated films on flexible substrates by optimization of slot-die process parameters

  • Jeong, Guk-Chae;Jeong, Tae-Jeong;Kim, Yeong-Guk;Choe, Cheol-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.179-179
    • /
    • 2009
  • For the deposition of the semiconductor nanocrystals or quantum dots, it is required to have the substrates with smooth surface roughness. Slot-die coating method wad adopted and optimized varying the processing parameters like coating speed, gap distance, solution concentration, etc to get the smooth coated films on flexible substrates. The coating speed in slot-die method was varied from 1 m/min to 2.5 m/min focusing especially on its industrial usage. The gap distance between the substrate surface and slot-die lip was changed also to control mainly the thickness of coated films.

  • PDF

A Study on Stress Distribution Using Boundary Element Analysis Due to Surface Coating in Sliding Contact (경계요소법을 이용한 미끄럼 접촉을 받고 있는 코팅층의 응력분포에 관한 연구)

  • Lee, Gang-Yong;Gang, Jin-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.304-311
    • /
    • 2001
  • The present work examines the influence of surface coating on the temperature and the thermo-mechanical stress field produced by friction due to sliding contact. A two-dimensional transient model of a layered medium submitted to a moving heat flux is prsented. A solution technique based on the boundary element method employing the multiregion technique is utilized. Results are presented showing the influence of coating thickness, thermal properties, Peclet number, and mechanical properties. It has been shown that the mechanical properties and thickness of coating have a significant influence on the stress field, even for low temperature increase. The effects of the ratios of shear modulus become more important for low temperature increase than the effects of the ratios of other mechanical properties.