• Title/Summary/Keyword: soluble epoxide hydrolase inhibitor

Search Result 3, Processing Time 0.017 seconds

Development of Soluble Epoxide Hydrolase Inhibitor Screening Methods for Discovery of Drug Candidate in Cardiovascular Diseases (심혈관계 질환 치료제 후보물질 발굴을 위한 Soluble Epoxide Hydrolase 억제평가 방법 개발)

  • Lee, Gwan-Ho;Kim, Bong-Hee;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.56 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • Soluble epoxide hydrolase (sEH) is a metabolic regulator of epoxyeicosatrienoic acids (EETs). EETs have many beneficial effects, vasodilation, anti-diabetes, anti-inflammation, cardiovascular protection, renal protection. Therefore, selective sEH inhibitors have a potential for treating these diseases. In the present study, screening methods for sEH inhibitors using PHOME ((3-phenyl-oxiranyl)-acetic acid cyano-(6-methoxynaphthalen-2-yl)-methyl ester) and 14-15-EET as substrates were established. To determine selectivity, microsomal epoxide hydrolase (mEH) inhibition assay was also developed using styrene oxide as a substrate of microsomal epoxide hydrolase. Our results obtained from 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid (AUDA) used as a positive sEH inhibitor and valpromide used as a positive mEH inhibitor showed that these methods are useful for discovery of drug candidates.

Role of Akt in Insulin-Mediated Increase in Expression of Microsomal Epoxide Hydrolase (인슐린 매개성 Microsomal Epoxide Hydrolase의 발현증가에서 Akt의 역할)

  • Kim, Sang-Kyum;Kim, Bong-Hee;Oh, Jung-Min;Yun, Kang-Uk;Kim, Chung-Hyeon;Kang, Keon-Wook
    • YAKHAK HOEJI
    • /
    • v.51 no.5
    • /
    • pp.291-295
    • /
    • 2007
  • The present study examines the effect of dominant-negative Akt on the insulin-mediated microsomal epoxide hydrolase (mEH) induction in rat hepatocytes. We also assessed the role of insulin in the expression of soluble epoxide hydrrolase (sEH). Insulin increased mEH levels and the enzyme activities, whereas sEH protein expression was unaffected by insulin. The specific PI3K inhibitors or p70 S6 kinase inhibitor ameliorated the insulin-mediated increase in mEH protein levels. Infection with adenovirus expressing dominant-negative and kinase-dead mutant of Akt1 effectively inhibited the insulin-mediated increase in mEH expression and mEH activity. These results suggest that mEH and sEH are differentially regulated by insulin and PI3K/Akt/p70S6K are active in the insulin-mediated regulation of mEH expression.

Soluble Epoxide Hydrolase Inhibitory Activity from Euphorbia supina Rafin

  • Luyen, Bui Thi Thuy;Thao, Nguyen Phuong;Tai, Bui Huu;Dat, Le Duc;Kim, Ji Eun;Yang, Seo Young;Kwon, Se Uk;Lee, Young Mi;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.176-184
    • /
    • 2015
  • In our search for natural soluble epoxide hydrolase (sEH) inhibitors from plants, an extract of the dried whole plants of Euphorbia supina Rafin was found to significantly inhibit sEH activity in vitro. Phytochemical investigation of E. supina resulted in isolation of 17 compounds (1 - 17), including triterpenes (1 - 4), phenolic compounds (5 - 8), and flavonoid derivatives (9 - 17). The structures of the isolated compounds were established mainly by extensive analysis of the 1D and 2D NMR, and MS data. All of the isolated compounds were evaluated for their sEH inhibitory activity. Among the isolated phenolic compounds, 8 was identified as a significant inhibitor of sEH, with an IC50 value of 15.4 ± 1.3 μM. Additionally, a kinetic analysis of isolated compounds (2, 5, 8 - 11, 13, and 17) indicated that the inhibitory effects of flavonoid derivatives 10 and 11 were of mixed-type, with inhibitory constants (Ki) ranging from 3.6 ± 0.8 to 21.8 ± 1.0 μM, whereas compounds 2, 5, 8, 9, 13, and 17 were non-competitive inhibitors with inhibition Ki values ranging from 3.3 ± 0.2 to 39.5 ± 0.0 μM.