• Title/Summary/Keyword: soluble ${\beta}$-glucan

검색결과 84건 처리시간 0.025초

Varietal and Annual Variations of β-Glucan Contents in Korean Barley (Hordeum vulgare L.) and Oat (Avena sativa L.) Cultivars

  • Lee, Mi-Ja;Yoo, Jae-Soo;Kim, Yang-Kil;Park, Jong-Chul;Kim, Tae-Soo;Choi, Jae-Seong;Kim, Kee-Jong;Kim, Hyung-Soon
    • 한국작물학회지
    • /
    • 제56권3호
    • /
    • pp.284-291
    • /
    • 2011
  • Varietal and annual variations in the contents of ${\beta}$-glucan fractions per weight grain samples were examined in sixteen covered and eighteen naked barley and five oat cultivars developed in Korea. Also, the effect of pearling on ${\beta}$-glucan content was investigated. Average contents of total, soluble and insoluble ${\beta}$-glucan fractions were 5.25, 3.72, and 1.53%, respectively, in covered barley, and 5.86, 3.51, and 2.35%, respectively, in naked barley. Soluble ${\beta}$-glucan content was higher in covered barley, though total ${\beta}$-glucan content higher in naked barley. The total and insoluble ${\beta}$-glucan contents were higher in pearled grains. Total ${\beta}$-glucan content was higher in waxy barley than in non-waxy barley. Duwonchapssalbori, a two-rowed and waxy naked barley cultivar, was highest in total, soluble and insoluble ${\beta}$-glucan contents. Highly significant positive correlations were observed between total ${\beta}$-glucan and soluble ${\beta}$-glucan contents both in covered and naked barley. There were significant annual variations in total ${\beta}$-glucan content in barley. Average contents of total, soluble and insoluble ${\beta}$-glucans of oat cultivars were 4.33, 3.44, and 0.89%, respectively. Contents of all fractions of ${\beta}$-glucans were higher in barley than in oat. These results would be useful for the breeding of high ${\beta}$-glucan variety and also for the use barley and oat as valueadded food ingredients.

Physicochemical Properties of β-Glucan from Acid Hydrolyzed Barley

  • Lee, Sang Hoon;Jang, Gwi Yeong;Hwang, In Guk;Kim, Hyun Young;Woo, Koan Sik;Kim, Kee Jong;Lee, Mi Ja;Kim, Tae Jip;Lee, Junsoo;Jeong, Heon Sang
    • Preventive Nutrition and Food Science
    • /
    • 제20권2호
    • /
    • pp.110-118
    • /
    • 2015
  • This study was performed to investigate changes in the content and purity, as well as physical characteristics of ${\beta}$-glucan extracted from acid hydrolyzed whole grain barleys. Waxy and non-waxy barleys (Hordeum vulgare) were hydrolyzed with different concentrations of HCl (0.1~0.5 N) for 1 h. As the HCl concentration increased, the contents of total and soluble ${\beta}$-glucan from acid hydrolyzed barley decreased. However the ratio of soluble/total ${\beta}$-glucan content and purities of ${\beta}$-glucan significantly increased. The ratio of ${\beta}-(1{\rightarrow}4)/{\beta}-(1{\rightarrow}3)$ linkages, molecular weight, and viscosity of soluble ${\beta}$-glucan of raw barleys were 2.28~2.52, $6.0{\sim}7.0{\times}10^5g/mol$, and 12.8~32.8 centipoise (cP). Those of isolated soluble ${\beta}$-glucan were significantly decreased to 2.05~2.15, $6.6{\sim}7.8{\times}10^3g/mol$, and 3.6~4.2 cP, respectively, with increasing acid concentration. The re-solubility of raw barley ${\beta}$-glucan was about 50%, but increased to 97% with increasing acid concentration. Acid hydrolysis was shown to be an effective method to produce ${\beta}$-glucan with high ratio of soluble ${\beta}$-glucan content, purity, water solubility, and low viscosity.

알칼리 가수분해에 따른 보리 β-Glucan의 이화학적 특성 (Physicochemical Properties of Depolymerized Barley β-Glucan by Alkali Hydrolysis)

  • 이상훈;장귀영;김기종;이미자;김태집;이준수;정헌상
    • 한국식품영양학회지
    • /
    • 제26권3호
    • /
    • pp.601-607
    • /
    • 2013
  • 알칼리 가수분해에 따른 보리 ${\beta}$-glucan의 이화학적 특성변화를 살펴보기 위하여 새쌀보리, 새찰쌀보리 및 흰찰쌀보리에 0.2~1.0 N NaOH를 처리하였으며, 총 및 수용성 ${\beta}$-glucan의 함량 및 순도, 수용성 ${\beta}$-glcuan의 분자량, 점도 및 재용해율을 살펴보았다. 3품종 보리의 총 ${\beta}$-glucan 함량은 7.77~8.40% 범위이었으며, 알칼리 가수분해 농도가 증가함에 따라 6.89~7.54% 범위로 감소하였다. 수용성 ${\beta}$-glucan의 함량은 무처리의 4.16~4.80% 범위에서 알칼리 가수분해 농도가 증가함에 따라 4.30~4.82% 범위로 유의적인 차이가 없었다. 수용성 ${\beta}$-glucan의 순도는 3품종 모두 30.91~35.79% 범위이었으나, 알칼리 가수분해에 의해 74.02~81.41%까지 증가하였다. 분자량은 메성보리보다 찰성보리가 더 컸으며, 알칼리 가수분해 농도가 증가함에 따라서 크게 감소하였다. ${\beta}$-Glucan 수용액의 점도는 알칼리 가수분해 농도가 증가함에 따라 감소하였으며, 메성보리보다 찰성보리가 높았고, 흰찰쌀보리보다 새찰쌀보리가 높았다. 재용해율은 무처리의 50~55% 범위에서 알칼리 가수분해 농도가 증가함에 따라 증가하여 1.0 N NaOH 처리구에서 80.00~87.66% 범위로 증가하였다.

Antitumor Effect of Soluble ${\beta}$-1,3-Glucan from Agrobacterium sp. R259 KCTC 1019

  • Shim, Jung-Hyun;Sung, Ki-Joong;Cho, Min-Chul;Choi, Won-A;Yang, Young;Lim, Jong-Seok;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권9호
    • /
    • pp.1513-1520
    • /
    • 2007
  • [ ${\beta}$ ]-1,3-Glucans enhance immune reactions such as antitumor, antibacterial, antiviral, anticoagulatory, and wound healing activities. ${\beta}$-1,3-Glucans have various functions depending on the molecular weight, degree of branching, conformation, water solubility, and intermolecular association. The molecular weight of the soluble glucan was about 15,000 as determined by a high-performance size exclusion chromatography. From the infrared (IR) and $^{13}C$ NMR analytical data, the purified soluble glucan was found to exclusively consist of ${\beta}$-D-glucopyranose with 1,3 linkage. We tested the immunestimulating activities of the soluble ${\beta}$-1,3-glucan extracted from Agrobacterium sp. R259 KCTC 1019 and confirmed the following activities. IFN-$_{\gamma}$ and each cytokines were induced in the spleens and thymus of mice treated with soluble ${\beta}$-1,3-glucan. Adjuvant effect was observed on antibody production. Nitric oxide was synthesized in monocytic cell lines treated with ${\beta}$-1,3-glucan. The cytotoxic and antitumor effects were observed on various cancer cell lines and ICR mice. These results strongly suggested that this soluble ${\beta}$-1,3-glucan could be a good candidate for an immune-modulating agent.

In Vitro Antioxidant Activity Profiles of ${\beta}$-Glucans Isolated from Yeast Saccharomyces cerevisiae and Mutant Saccharomyces cerevisiae IS2

  • Song, Hee-Sun;Moon, Ki-Young
    • Food Science and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.437-440
    • /
    • 2006
  • To explore the possible usefulness of ${\beta}$-glucans as natural antioxidants, the antioxidant profiles of ${\beta}$-glucan, extracted from Saccharomyces cerevisiae KCTC 7911, and water soluble and insoluble mutant ${\beta}$-glucan, isolated from yeast mutant S. cerevisiae IS2, were examined by five different in vitro evaluation methods: lipid peroxidation value (POV), nitric oxide (NO), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, reducing power, and ${\beta}$-carotene diffusion assay. The antioxidant activities of all ${\beta}$-glucans evaluated in POV test were comparable to or better than that of the known antioxidant, vitamin C. Remarkably, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan possessed 2.5-fold more potent activity than vitamin C at a dosage of 2 mg. Although vitamin C showed 100-fold greater activity than all ${\beta}$-glucans in NO and DPPH tests for measuring the radical scavenging capacity, all ${\beta}$-glucans revealed higher radical scavenging activity than the known radical scavenger, N-acetyl-L-cysteine (NAC), in DPPH test. The water insoluble mutant ${\beta}$-glucan had 2.6- and 5-fold greater antioxidative activity than water soluble ${\beta}$-glucan in NO and DPPH tests, respectively, showing that all ${\beta}$-glucans were able to scavenge radicals such as NO or DPPH. While all ${\beta}$-glucans revealed lower antioxidant profiles than vitamin C in both reducing power activity and ${\beta}$-carotene agar diffusion assay, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan did show a marginal reducing power activity as well as a considerable ${\beta}$-carotene agar diffusion activity. These results confirmed the potential usefulness of these ${\beta}$-glucans as natural antioxidants.

Generation and Evaluation of High ${\beta}$-Glucan Producing Mutant Strains of Sparassis crispa

  • Kim, Seung-Rak;Kang, Hyeon-Woo;Ro, Hyeon-Su
    • Mycobiology
    • /
    • 제41권3호
    • /
    • pp.159-163
    • /
    • 2013
  • A chemical mutagenesis technique was employed for development of mutant strains of Sparassis crispa targeting the shortened cultivation time and the high ${\beta}$-glucan content. The homogenized mycelial fragments of S. crispa IUM4010 strain were treated with 0.2 vol% methyl methanesulfonate, an alkylating agent, yielding 199 mutant strains. Subsequent screening in terms of growth and ${\beta}$-glucan content yielded two mutant strains, B4 and S7. Both mutants exhibited a significant increase in ${\beta}$-glucan productivity by producing 0.254 and 0.236 mg soluble ${\beta}$-glucan/mg dry cell weight for the B4 and S7 strains, respectively, whereas the wild type strain produced 0.102 mg soluble ${\beta}$-glucan/mg dry cell weight. The results demonstrate the usefulness of chemical mutagenesis for generation of mutant mushroom strains.

보리와 귀리의 ${\beta}-Glucans$ 및 가공에 의한 용해성의 변화 (${\beta}-Glucans$ in Barley and Oats and Their Changes in Solubility by Processing)

  • 이영택
    • Applied Biological Chemistry
    • /
    • 제39권6호
    • /
    • pp.482-487
    • /
    • 1996
  • 한국산 보리 및 귀리품종의 수용성, 불용성 및 총 ${\beta}-glucan$ 함량을 분석하여 ${\beta}-glucan$의 용해성을 조사하였다. 보리원맥의 총 ${\beta}-glucan$ 함량은 $3.3{\sim}5.6%$ 범위였으며 $65{\sim}70%$ 정맥수율로 도정하여 껍질 및 강층을 제거한 정맥의 ${\beta}-glucan$ 함량은 $3.5{\sim}7.1%$로 증가하였다. 보리원맥의 수용성 ${\beta}-glucan$ 함량은 $1.4{\sim}3.3%$의 분포였으며 총 ${\beta}-glucan$에 대한 수용성 ${\beta}-glucan$의 백분을로 나타낸 용해성(% solubility)은 $43{\sim}61%$ 범위로 총량의 약 반가량이 수용성인 것으로 나타났다. 보리정맥에 있어서는 총 ${\beta}-glucan$과 불용성 ${\beta}-glucan$ 함량은 증가한 반면 수용성 ${\beta}-glucan$은 약간 감소하는 경향을 보여 용해성이 $35{\sim}55%$로 원맥보다 다소 낮았다. 귀리는 총 ${\beta}-glucan$ 함량이 겉귀리에서 $3.1{\sim}4.0%$, groats에서 $4.0{\sim}4.8%$였으며 불용성 ${\beta}-glucan$ 함량이 $0.5{\sim}0.7%$로 보리에서 보다 훨씬 낮아 추출되어 나오는 수용성 ${\beta}-glucan$은 약 84%로 매우 높게 나타났다. 보리와 귀리는 추출초기에 빠른 속도로 ${\beta}-glucan$이 추출되었으며 귀리가 보리에 비해 추출이 보다 급격히 이루어졌는데 $2{\sim}3$시간 후에는 대부분의 수용성 ${\beta}-glucan$이 추출되었다 추출온도가 $23{\sim}45^{\circ}C$로 증가함에 따라 수용성 추출량이 증가하였으나 $65^{\circ}C$에서는 보리의 경우 추출량이 떨어졌다. 보리 및 귀리는 증자에 의한 가열처리에 의해 불용성 ${\beta}-glucan$ 함량이 증가하여 ${\beta}-glucan$의 용해성이 떨어진 반면 보리의 볶음처리에서는 ${\beta}-glucan$이 가용화됨에 따라 용해성이 증가하는 것으로 나타났다.

  • PDF

Cloning and Molecular Characterization of ${\beta}$-1,3-Glucan Synthase from Sparassis crispa

  • Yang, Yun Hui;Kang, Hyeon-Woo;Ro, Hyeon-Su
    • Mycobiology
    • /
    • 제42권2호
    • /
    • pp.167-173
    • /
    • 2014
  • A ${\beta}$-glucan synthase gene was isolated from the genomic DNA of polypore mushroom Sparassis crispa, which reportedly produces unusually high amount of soluble ${\beta}$-1,3-glucan (${\beta}$-glucan). Sequencing and subsequent open reading frame analysis of the isolated gene revealed that the gene (5,502 bp) consisted of 10 exons separated by nine introns. The predicted mRNA encoded a ${\beta}$-glucan synthase protein, consisting of 1,576 amino acid residues. Comparison of the predicted protein sequence with multiple fungal ${\beta}$-glucan synthases estimated that the isolated gene contained a complete N-terminus but was lacking approximately 70 amino acid residues in the C-terminus. Fungal ${\beta}$-glucan synthases are integral membrane proteins, containing the two catalytic and two transmembrane domains. The lacking C-terminal part of S. crispa ${\beta}$-glucan synthase was estimated to include catalytically insignificant transmembrane ${\alpha}$-helices and loops. Sequence analysis of 101 fungal ${\beta}$-glucan synthases, obtained from public databases, revealed that the ${\beta}$-glucan synthases with various fungal origins were categorized into corresponding fungal groups in the classification system. Interestingly, mushrooms belonging to the class Agaricomycetes were found to contain two distinct types (Type I and II) of ${\beta}$-glucan synthases with the type-specific sequence signatures in the loop regions. S. crispa ${\beta}$-glucan synthase in this study belonged to Type II family, meaning Type I ${\beta}$-glucan synthase is expected to be discovered in S. crispa. The high productivity of soluble ${\beta}$-glucan was not explained but detailed biochemical studies on the catalytic loop domain in the S. crispa ${\beta}$-glucan synthase will provide better explanations.

보리의 발아정도가 맥아의 ${\beta}$-glucan 용해성 및 맥주의 점도에 미치는 영향 (Effects of Malt Modification on ${\beta}$-Glucan Solubility and Beer Viscosity)

  • 이영택
    • 한국식품과학회지
    • /
    • 제40권3호
    • /
    • pp.360-363
    • /
    • 2008
  • 발아시간에 따라 덜 변형된 맥아(60시간 발아)와 적절히 변형된 맥아(96시간 발아)의 총, 불용성 및 수용성 ${\beta}-glucan$ 함량을 측정하였다. 보리의 총 ${\beta}-glucan$ 함량은 3.96%였으며 발아 중에 감소하였는데 덜 변형된 맥아에서는 1.02%인 반면에 적절히 변형된 맥아에서는 0.18%로 급격히 감소하였다. 적절히 변형된 맥아는 $21^{\circ}C$$45^{\circ}C$ 추출온도에서 ${\beta}-glucan$ 용해성이 덜 변형된 맥아에 비해 현저하게 증가하였다. 변형정도가 다른 두가지 맥아에 대하여 당화온도별로 당화 후 맥즙과 맥주의 점도를 분석하였다. 당화온도가 $45-75^{\circ}C$로 증가함에 따라 맥즙과 맥주의 점도가 증가하였으며 적절히 변형된 맥아가 덜 변형된 맥아에 비해 점도의 상승이 크지 않았다. 이는 적절히 변형된 맥아는 덜 변형된 맥아에 비해서 당화과정중에 ${\beta}-glucan$ 용해성이 상대적으로 높지만 초기 ${\beta}-glucan$의 함량이 낮을 뿐 만 아니라 맥아에 충분히 합성되어 발달된 ${\beta}-glucanse$의 활성에 의해 당화과정 중에 용출되어지는 ${\beta}-glucan$의 분해가 이루어지기 때문인 것으로 판단되었다.

Saccharomyces cerevisiae의 베타-1,3-글루칸 합성효소 체계의 특성 (Properties of $\beta$-1,3-glucan Synthase System in Saccharomyces cerevisiae)

  • 박희문;김정윤;김성욱;복성해
    • 한국미생물·생명공학회지
    • /
    • 제23권3호
    • /
    • pp.316-321
    • /
    • 1995
  • Some properties of $\beta$-1, 3-glucan synthase system in Saccharamyces cerevisiae were investigated. By extraction with detergent and salt, the membrane preparations could be dissociated into two components, one soluble, the other still membrane bound. Both components, in addition to GTP, were necessary for the activity of $\beta$-1, 3-glucan synthase like other fungi. The protective effect of guanosine nucleotides on the soluble factor pointed to the possibility that this fraction contained a GTP-binding protein. Addition of increasing amounts of soluble factor to a constant amount of insoluble catalytic factor, vice versa, gave rise to a saturation curve. These results, including different types of evidence, indicate that the soluble factor and the catalytic factor form a complex.

  • PDF