• Title/Summary/Keyword: solid-substrate fermentation

Search Result 63, Processing Time 0.027 seconds

A Study on the Reduction of Gossypol Levels by Mixed Culture Solid Substrate Fermentation of Cottonseed Meal

  • Zhang, Wenju;Xu, Zirong;Sun, Jianyi;Yang, Xia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1314-1321
    • /
    • 2006
  • The objective of this work was to study the effect of mixed culture solid substrate fermentation of C. tropicalis ZD-3 with A. niger ZD-8 on detoxification of cottonseed meal (CSM), and to investigate the effect of fermentation period, proportion of CSM in substrate, sodium carbonate, minerals and heat treatment on the reduction of free gossypol levels during mixed culture solid substrate fermentation of CSM. Experiment 1: Three groups of disinfected CSM substrate were incubated for 48 h after inoculation with either of the fungi C. tropicalis ZD-3, A. niger ZD-8 or mixed culture (C. tropicalis ZD-3 with A. niger ZD-8). One non-inoculated group was used as the control. Levels of initial and final free gossypol (FG), CP and in vitro CP digestibility were assayed. The results indicated that mixed culture fermentation was far more effective than single strain fermentation, which not only had higher detoxification rate, but also had higher CP content and in vitro digestibility. Experiment 2: CSM substrates were treated according to experimental variables including fermentation period, proportion of CSM in substrate, sodium carbonate, minerals and heat treatment, Then, the treated CSM substrates were inoculated with mixed culture (C. tropicalis ZD-3 with A. niger ZD-8) and incubated at $30^{\circ}C$ for 36 h in a 95% relative humidity chamber. After fermentation ended, FG and CP content of fermented CSM substrate was assayed. The results showed that the appropriate fermentation period was 36 h, and the optimal proportion of CSM in substrate was 70%. Addition of sodium carbonate to CSM substrate was beneficial for fermentative detoxification. Heat treatment could facilitate fermentative detoxification, and supplementation with minerals was instrumental in reducing gossypol levels during mixed culture solid substrate fermentation of CSM.

Production of Protein-bound Polysaccharides by Solid-substrate Fementation of Lentinus edodes (표고버섯의 고체배양에 의한 단백 다당류 생산)

  • 박경숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.667-672
    • /
    • 1998
  • The possibility of solid-substrate fermentation of Lentinus edoes for the productin of protein-boud polysaccharides (PBP) was studied. Zeolite and orchid-pot soil were used as solid materials for the culture because of the desirable physical properties. Sucrose and starch were good carbon sources for the production of PBP by the solid-substrate fermentatin of L. edodes. Among the nitrogen source, bactosoyton was very effective for the PBP production. The optimum pH for solid-substrate fementation for the production of PBP was at pH of 5.5. The PBP production reached to 5∼5.5mg per 100g solid-substrate.

  • PDF

A Novel Medium for the Enhanced Production of Cyclosporin A by Tolypocladium inflatum MTCC 557 Using Solid State Fermentation

  • Survase, Shrikant A.;Shaligram, Nikhil S.;Pansuriya, Ruchir C.;Annapure, Uday S.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.462-467
    • /
    • 2009
  • Cyclosporin A (CyA) produced by Tolypocladium inflatum is a promising drug owing to its immunosuppressive and antifungal activities. From an industrial point of view, the necessity to obtain a suitable and economic medium for higher production of CyA was the aim of this work. The present study evaluated the effect of different fermentation parameters in solid state fermentation, such as selection of solid substrate, hydrolysis of substrates, initial moisture content, supplementation of salts, additional carbon, and nitrogen sources, as well as the inoculum age and size, on production of CyA by Tolypocladium inflatum MTCC 557. The fermentation was carried out at $25{\pm}2^{\circ}C$ for 9 days. A combination of hydrolyzed wheat bran flour and coconut oil cake (1:1) at 70% initial moisture content supported a maximum production of $3,872{\pm}156\;mg$ CyA/kg substrate as compared with $792{\pm}33\;mg/kg$ substrate before optimization. Furthermore, supplementation of salts, glycerol (1% w/w), and ammonium sulfate (1% w/w) increased the production of CyA to $5,454{\pm}75\;mg/kg$ substrate. Inoculation of 5 g of solid substrate with 6 ml of 72-h-old seed culture resulted in a maximum production of $6,480{\pm}95\;mg$ CyA/kg substrate.

Characteristics of Solid-state Fermented Feed and its Effects on Performance and Nutrient Digestibility in Growing-finishing Pigs

  • Hu, Jiankun;Lu, Wenqing;Wang, Chunlin;Zhu, Ronghua;Qiao, Jiayun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1635-1641
    • /
    • 2008
  • This study investigated the effects of solid-state fermentation of a compound pig feed on its microbial and nutritional characteristics as well as on pig performance and nutrient digestibility. A mixed culture containing Lactobacillus fermentum, Saccharomyces cerevisae and Bacillus subtilis was used for solid-state fermentation and solid-state fermented feed samples were collected on days 0, 1, 2, 3, 5, 7, 10, 15, 20 and 30 for microbial counts and chemical analysis. Lactic acid bacteria increased rapidly during the first three days of fermentation and then slowly declined until day 10 and, thereafter, the counts were maintained at about 6.7 log cfu/g for the duration of the fermentation period. Enterobacteria also increased during the first two days, and then fell below the detectable level of the analysis (3.0 log cfu/g). The pH of the fermentation substrate declined from 6.1 at the start of fermentation to 5.7 by day 30. The water-soluble protein content increased from 8.2 to 9.2% while the concentration of acetic acid increased from 16.6 to 51.3 mmol/kg over the 30-day fermentation. At the end of the 30-day fermentation, the solid-state fermented feed was used in a pig feeding trial to determine its effects on performance and nutrient digestibility in growing-finishing pigs. Twenty crossbred barrows ($14.11{\pm}0.77kg\;BW$) were allotted into two dietary treatments, which comprised a regular dry diet containing antibiotics and a solid-state fermented feed based diet, free of antibiotics. There was no difference due to diet on pig performance or nutrient digestibility. In conclusion, solid-state fermentation resulted in high counts of lactic acid bacteria and low counts of enterobacteria in the substrate. Moreover, feeding a diet containing solid-state fermented feed, free of antibiotics, can result in similar performance and nutrient digestibility in growing-finishing pigs to a regular diet with antibiotics.

Enzyme Activities and Substrate Degradation by Fungal Isolates on Cassava Waste During Solid State Fermentation

  • Pothiraj, C.;Eyini, M.
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.196-204
    • /
    • 2007
  • The growth and bioconversion potential of selected strains growing on cassava waste substrate during solid state fermentation were assessed. Rhizopus stolonifer showed the highest and the fastest utilization of starch and cellulose in the cassava waste substrate. It showed 70% starch utilization and 81% cellulose utilization within eight days. The release of reducing sugars indicating the substrate saccharification or degradation potential of the organisms reached the highest value of 406.5 mg/g by R. stolonifer on cassava waste during the eighth day of fermentation. The protein content was gradually increased (89.4 mg/g) on the eighth day of fermentation in cassava waste by R. stolonifer. The cellulase and amylase activity is higher in R. stolonifer than A. niger and P. chrysosporium. The molecular mass of purified amylase and cellulase seemed to be 75 KDal, 85 KDal respectively.

Development of FK506-hyperproducing strain and optimization of culture conditions in solid-state fermentation for the hyper-production of FK506

  • Mo, SangJoon;Yang, Hyeong Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.289-298
    • /
    • 2016
  • FK506 hyper-yielding mutant, called the TCM8594 strain, was made from Streptomyces tsukubaensis NRRL 18488 by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, and FK506 sequential resistance selection. FK506 production by the TCM8594 strain improved 45.1-fold ($505.4{\mu}g/mL$) compared to that of S. tsukubaensis NRRL 18488 ($11.2{\mu}g/mL$). Among the five substrates, wheat bran was selected as the best solid substrate to produce optimum quantities of FK506 ($382.7{\mu}g/g$ substrate) under solid-state fermentation, and the process parameters affecting FK506 production were optimized. Maximum FK506 yield ($897.4{\mu}g/g$ substrate) was achieved by optimizing process parameters, such as wheat bran with 5 % (w/w) dextrin and yeast extract as additional nutrients, 70 % (v/w) initial solid substrate moisture content, initial medium pH of 7.2, $30^{\circ}C$ incubation temperature, inoculum level that was 10 % (v/w) of the cell mass equivalent, and a 10 day incubation. The results showed an overall 234 % increase in FK506 production after optimizing the process parameters.

Production of protein-bound polysaccharides by solid-state fermentation of Coriolus versicolor (구름버섯의 고체발효에 의한 단백다당류 생산)

  • Park, Kyung-Sook;Park, Shin;Jung, In-Chang;Ha, Hyo-Cheol;Kim, Seon-Hee;Lee, Jae-Sung
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.184-189
    • /
    • 1994
  • The possibility of solid-substrate fermentation of Coriolus versicolor for the production of protein-bound polysaccharides(PBP) was studied. Zeolite and orchid-pot soil were used as solid materials for the culture because of the desirable physical properties. Glucose, sucrose and starch showed to be good carbon sources for the production of PBP by the solid-substrate fermantation of C. versicolor. Among the nitrogen sources, bactosoyton and peptone were very effective for the PBP production. The optimum pH for solid-substrate culture for the production of PBP was at the range of 5-6. The yields of PBP reached to 5-6 mg per 100 g solid-substrate.

  • PDF

High-Solid Enzymatic Hydrolysis and Fermentation of Solka Floc into Ethanol

  • Um, Byung-Hwan;Hanley, Thomas R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1257-1265
    • /
    • 2008
  • To lower the cost of ethanol distillation of fermentation broths, a high initial glucose concentration is desired. However, an increase in the substrate concentration typically reduces the ethanol yield because of insufficient mass and heat transfer. In addition, different operating temperatures are required to optimize the enzymatic hydrolysis (50$^{\circ}C$) and fermentation (30$^{\circ}C$). Thus, to overcome these incompatible temperatures, saccharification followed by fermentation (SFF) was employed with relatively high solid concentrations (10% to 20%) using a portion loading method. In this study, glucose and ethanol were produced from Solka Floc, which was first digested by enzymes at 50$^{\circ}C$ for 48 h, followed by fermentation. In this process, commercial enzymes were used in combination with a recombinant strain of Zymomonas mobilis (39679:pZB4L). The effects of the substrate concentration (10% to 20%, w/v) and reactor configuration were also investigated. In the first step, the enzyme reaction was achieved using 20 FPU/g cellulose at 50$^{\circ}C$ for 96 h. The fermentation was then performed at 30$^{\circ}C$ for 96 h. The enzymatic digestibility was 50.7%, 38.4%, and 29.4% after 96 h with a baffled Rushton impeller and initial solid concentration of 10%, 15%, and 20% (w/v), respectively, which was significantly higher than that obtained with a baffled marine impeller. The highest ethanol yield of 83.6%, 73.4%, and 21.8%, based on the theoretical amount of glucose, was obtained with a substrate concentration of 10%, 15%, and 20%, respectively, which also corresponded to 80.5%, 68.6%, and 19.1%, based on the theoretical amount of the cell biomass and soluble glucose present after 48 h of SFF.

Solid-State Fermentation for the Production of Meroparamycin by Streptomyces sp. strain MAR01

  • El-Naggar, Moustafa Y.;El-Assar, Samy A.;Abdul-Gawad, Sahar M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.468-473
    • /
    • 2009
  • The antibiotic meroparamycin was produced in the free culture system of Streptomyces sp. strain MAR01. Five solid substrates (rice, wheat bran, Quaker, bread, and ground corn) were screened for their ability to support meroparamycin production in solid-state fermentation. In batch culture, wheat bran recorded the highest antibacterial activity with the lowest residual substrate values. The highest residual substrate values were recorded for both ground corn and Quaker. On the other hand, no antibacterial activity was detected for rice as a solid substrate. The use of the original strength of starch-nitrate medium in the solid-state fermentation gave a lower antibacterial activity compared with the free culture system. Doubling the strength of this medium resulted in the increase in the activity to be equivalent to the free culture. The initial pH (7.0) of the culture medium and 2 ml of spore suspension (1 ml contains $5{\times}10^{9}spores/ml$) were the optima for antibiotic production. The water was the best eluent for the extraction of the antibiotic from the solid-state culture. Ten min was enough time to extract the antibiotic using a mixer, whereas, 60 min was required when shaking was applied. Semicontinuous production of meroparamycin using a percolation method demonstrated a more or less constant antibacterial activity over 4 runs ($450-480{\mu}g/ml$). The semicontinuous production of the antibiotic was monitored in a fixed-bed bioreactor and the maximum activity was attained after the fourth run ($510{\mu}g/ml$) and the overall process continued for 85 days.

Fuzzy Logic Control of Rotating Drum Bioreactor for Improved Production of Amylase and Protease Enzymes by Aspergillus oryzae in Solid-State Fermentation

  • Sukumprasertsri, Monton;Unrean, Pornkamol;Pimsamarn, Jindarat;Kitsubun, Panit;Tongta, Anan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.335-342
    • /
    • 2013
  • In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.