• Title/Summary/Keyword: solid-state synthesis

Search Result 357, Processing Time 0.029 seconds

Synthesis, Potentiometric, Spectral Characterization and Microbial Studies of Transition Metal Complexes with Tridentate Ligand (세자리 리간드의 전이금속 착물에 대한 합성과 전위차 및 분광학적 확인 그리고 미생물학적 연구)

  • Jadhav, S.M.;Munde, A.S.;Shankarwar, S.G.;Patharkar, V.R.;Shelke, V.A.;Chondhekar, T.K.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.515-522
    • /
    • 2010
  • A relation between antimicrobial activities and the formation constants of solid complexes of Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with tridentate Schiff base ligand, 4-hydroxy-3(1-{2-(benzylideneamino)-phenylimino}-ethyl)-6-methyl-2Hpyran-2-one (HL) derived from o-phenylene diamines, dehydroacetic acid (DHA) and p-chloro benzaldehyde have been studied. The ligand and metal complexes were characterized by elemental analysis, conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, $^1H$-NMR, UV-vis and mass spectra. From the analytical data, the stiochiometry of the complexes was found to be 1:2 (metal:ligand) with octahedral geometry. The molar conductance values suggest the nonelectrolytic nature of metal complexes. The X-ray diffraction data suggests monoclinic crystal system for Ni(II) and orthorhombic crystal system for Cu(II) and Co(II) complexes. The IR spectral data suggest that the ligand behaves as tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behavior (TG/DTA) and kinetic parameters calculated by Coats-Redfern method suggests more ordered activated state in complex formation. The protonation constants of the complexes were determined potentiometrically in THF:water (60:40) medium at $25^{\circ}C$ and ionic strength ${\mu}=0.1\;M$ ($NaClO_4$). Antibacterial activities in vitro were performed against Staphylococcus aureu and Escherichia coli. Antifungal activities were studied against Aspergillus Niger and Trichoderma. The effect of the metal ions and stabilities of complexes on antimicrobial activities are discussed.

Formation of Layered Bi5Ti3FeO15 Perovskite in Bi2O3-TiO2-Fe2O3 Containing System

  • Borse, Pramod H.;Yoon, Sang-Su;Jang, Jum-Suk;Lee, Jae-Sung;Hong, Tae-Eun;Jeong, Euh-Duck;Won, Mi-Sook;Jung, Ok-Sang;Shim, Yoon-Bo;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3011-3015
    • /
    • 2009
  • Structural and thermo-analytical studies were carried out to understand the phase formation kinetics of the single phase $Bi_5Ti_3FeO_{15}$ (BTFO) nanocrystals in $Bi_2O_3-Fe_2O_3-TiO_2$, during the polymerized complex (PC) synthesis method. The crystallization of Aurivillius phase $Bi_5Ti_3FeO_{15}$ layered perovskite was found to be initiated and achieved under the temperature conditions in the range of ${\sim}$800 to 1050$^{\circ}C$. The activation energy for grain growth of $Bi_5Ti_3FeO_{15}$ nanocrystals (NCs) was very low in case of NCs formed by PC (2.61 kJ/mol) than that formed by the solid state reaction (SSR) method (10.9 kJ/mol). The energy involved in the phase transformation of Aurivillius phase $Bi_5Ti_3FeO_{15}$ from $Bi_2O_3-Fe_2O_3-TiO_2$ system was ${\sim}$ 69.8 kJ/mol. The formation kinetics study of $Bi_5Ti_3FeO_{15}$ synthesized by SSR and PC methods would not only render a large impact in the nanocrystalline material development but also in achieving highly efficient visible photocatalysts.

Synthesis of ferromagnetic Sm-Fe-N powders subjected to mechanochemical reaction (Mechanochemical Reaction에 의한 Sm-Fe-N계 자성분말의 합성)

  • 이충효;최종건;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.292-296
    • /
    • 2000
  • Mechenochemical reaction by planetary type ball mill is applied to prepare $Sm_2$$Fe_{17}$$N_{x}$ permanent magnet powders. Starting from pure samarium and iron powders, the formation process of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ phase by ball milling and a subsequent solid state reaction were studied. At as-milled stage powders were found to consist of amorphous Sm-Fe and $\alpha$-Fe phases in all composition of $Sm_2$$Fe_{100-x}$(x = 11, 13, 15). The dependence of starting composition of elemental powder on the formation of Sm-Fe intermetallic compound was investigated by heat treatment of as-milled powders. When Sm concentration was 15 at%, heat-treated powder consists of mostly $Sm_2$$Fe_{17}$$N_{x}$single phase. For synthesizing of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ compound, additional nitriding treatment was carried out under $N_2$gas atmosphere at $450^{\circ}C$. The increase in the coercivity and remanence was parallel to the nitrogen content which increased drastically at first and then gradually as the nitriding time was extended. The ball-milled Sm-Fe-N powders were expected to be prospective materials for synthesizing of permanent magnet with high performance.

  • PDF

Synthesis and Electrochemical Properties of Zn and Al added LiNi0.85Co0.15O2 Cathode Materials (Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가)

  • Kim, Su-Jin;Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • Zn and Al added LiNi0.85Co0.15O2 cathode materials were synthesized to improve electrochemical properties and thermal stability using a solid-state route. Crystal structure, particle size and surface shape of the synthesized cathode materials was measured using XRD (X-ray diffraction) and SEM (scanning electron microscopy). CV (cyclic voltammetry), first charge-discharge profiles, rate capability, and cycle life were measured using battery cycler (Maccor, series 4000). Strong binding energy of Al-O bond enhanced structure stability of cathode material. Electrochemical properties were improved by preventing cation mixing between Li+ and Ni2+. Large ion radius of Zn+ increased lattice parameter of NC cathode material, which meant unit-cell volume was expanded. NCZA25 showed 80% of capacity retention at 0.5 C-rate during 100 cycles, which was 12% higher than that of NC cathode. The discharge capacity of NCZA25 showed 104 mAh/g at 5 C-rate. NCZA25 achieved 36 mAh/g more capacity than that of NC cathod. NCZA25 cathode material showed excellent rate capability and cycling performance.

The effect of Dy2O3 addition on crystal structure, grain growth, and dielectric properties in BaTiO3 (BaTiO3에서 Dy2O3 첨가가 결정구조, 입자성장 및 유전특성에 미치는 영향)

  • Ahn, Won-Gi;Choi, Moonhee;Kim, Minkee;Moon, Kyoung-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.136-142
    • /
    • 2022
  • The crystal structure, grain growth behavior, and dielectric properties of BaTiO3 have been studied with the addition of Dy2O3. The powders were synthesized at ratios of (100-x)BaTiO3-xDy2O3 (mol%, x = 0, 0.5, 1.0, 2.0) by a conventional solid-state synthesis, and the powder compacts were sintered at 1250℃ for 2 hours in air. As the amount of added Dy2O3 was increased, the crystal structure of the sintered samples changed from a tetragonal to a pseudo-cubic structure, and the tetragonality decreased. In addition, a secondary phase of Ba12Dy4.67Ti8O35 appeared when Dy2O3 was added. The average grain size after sintering decreased and abnormal grains appeared as the amount of Dy2O3 increased. It can be explained that the grain growth behavior of the Dy2O3 added-BaTiO3 occurs due to the two-dimensional nucleation and growth, and is governed by the interface reaction. Further, the correlation between crystal structure, microstructure, and dielectric properties was discussed.

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF

Synthesis and Electrochemical Properties of Li1-xFeO2-yFy-LixMnO2 (Mn/(Mn + Fe) = 0.8, 0≤y≤0.15)) Cathode Materials by Anion Substitution (음이온 치환을 이용한 Li1-xFeO2-yFy-LixMnO2 (Mn/(Mn + Fe) = 0.8, 0≤y≤0.15) 양극 활물질의 합성 및 전기화학적 특성)

  • Heo, J.B.;Park, G.J.;Lee, Y.S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.239-244
    • /
    • 2007
  • In order to investigate the effect of fluorine ion in the $Li_{1-x}FeO_2Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8) cathode material, it was synthesized $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.05{\le}y{\le}0.15$) cathode materials at $350^{\circ}C$ for 10hrs using solid-state method. $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.0{\le}y{\le}0.1$ was composed many large needle-like particles of about $1-1.5\;{\mu}m$ and small particles of about 50-100 nm, which were distributed among the larger particles. However, $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ material showed slightly different particle morphology. The particles of $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ were suddenly increased and started to be a spherical type of particle shape. $Li/Li_{1-x}FeO_{1.9}F_{0.1}-Li_xMnO_2$ cell showed a high initial discharge capacity of 163 mAh/g and a high cycle retention rate of 95% after 50 cycles. The initial discharge capacity of $Li/Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ ($0.05{\le}y{\le}0.15$) cells increased according to the increase of F content. However, the cycleability of this cell was very rapidly decreased when the substituted fluorine content is over 0.1. We suggested that too large amount of F ion fail to substitute into the $Li_{1-x}FeO_2-Li_xMnO_2$ structure, which resulted in the severe decline of battery performance.