• Title/Summary/Keyword: solid oxide membrane

Search Result 34, Processing Time 0.023 seconds

Preparation and Oxygen Permeability of Nb-doped BCFN Ceramic Membrane (Nb-doped BCFN 세라믹 막의 제조 및 산소투과 특성)

  • Kim, Jong-Pyo;Son, Sou-Hwan;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • $BaCo_{0.7}Fe_{0.22}Nb_{0.08}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1,200^{\circ}C$. XRD result of membrane showed single perovskite structure. Leakage and oxygen permeation test were conducted on the membrane sealed by glass ring as a sealing material. The oxygen permeation flux increased with increasing temperature and pressure difference and maximum oxygen permeation flux was $2.3mL/min{\cdot}cm^2$ at $950^{\circ}C$ with $Po_2$ = 0.63 atm of oxygen partial pressure. The oxygen permeation in the condition of air with $CO_2$ (300 ppm) as feed stream decreased as much as only maximum 2.9% in comparison with air feed stream. It indicated $BaCo_{0.7}Fe_{0.22}Nb_{0.08}O_{3-{\delta}}$ membrane is more stable than another membrane for carbon dioxide.

Oxygen Permeability and Resistance to Carbon Dioxide of SrCo0.8Fe0.1Nb0.1O3-δ Ceramic Membrane (SrCo0.8Fe0.1Nb0.1O3-δ 세라믹 분리막의 산소투과 특성 및 이산화탄소에 대한 내성)

  • Kim, Eun Ju;Park, Se Hyoung;Park, Jung Hoon;Baek, Il Hyun
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.415-421
    • /
    • 2015
  • $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1250^{\circ}C$. XRD result of membrane showed single perovskite structure. The oxygen permeability were measured under 0.21 atm of oxygen partial pressure ($P_{O_2}$) and between 800 and $950^{\circ}C$. The oxygen permeation flux of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ membrane was increased with the increasing temperature. The maximum oxygen permeation flux was $1.839mL/min{\cdot}cm^2$ at $950^{\circ}C$. Long period permeability experiment was carried out to confirm the phase stability and $CO_2$-tolerance of membrane containing Nb in the condition of air with $CO_2$ (500 ppm) as feed stream at $900^{\circ}C$. The phase stability and $CO_2$-tolerance of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ were investigated by XRD and TG analysis. The result of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ which exposed carbon dioxide for 100 hours indicated 8wt% of $SrCO_3$. But it was known that the level of $SrCO_3$ production dose not have a significant effect on oxygen permeability.

Fuel cell based CHP technologies for residential sector (연료전지와 마이크로 열병합 발전기술)

  • Son, Young Mok
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.251-258
    • /
    • 2016
  • This article reports current status of micro fuel cell-combined heat and power (${\mu}FC$-CHP) systems which utilize both power and heat generated by fuel cells. There are several options for constructing CHP systems and among them, fuel cells are the most useful and their total energy efficiency combining heat and power can reach up to about 90%. Fuel cells are classified as five types based on the electrolyte, but the most suitable fuel cell types for the ${\mu}FC$-CHP system are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). ${\mu}FC$-CHP systems have several advantages such as decrease of the transmission-distribution loss, reduced costs of electricity due to distributed power generation, and environmental-friendliness owing to zero emission. The main drawback of the ${\mu}FC$-CHP systems is the high initial investment, however, it keeps decreasing as the technology development reduces production costs. Currently, Japan is the most leading country of the ${\mu}FC$-CHP market, however, Korea tries to expand the market by planning the deployment of 1 million units of ${\mu}FC$-CHP systems and governmental subsidiary supporting of half of the install price. In this report, integration technologies for connecting FC and CHP, and technology trends of leading countries are presented as well.

Study of Synthesis and Performance of Covalently Cross-Linked SPEEK/Cs-TSiA Composite Membranes with Ceria Contents for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TSiA 막의 Ceria의 함량에 따른 제조 및 성능 연구)

  • YOON, DAE-JIN;OH, YUN-SUN;SEO, HYEON;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.212-220
    • /
    • 2015
  • The engineering plastic of sulfonated polyether ether ketone (SPEEK) as a polymer matrix has been developed in this lab to replace Nafion, solid polymer electrolytes of perfluorosulfonic acid membrane which has several flaws such as high cost, and limited operational temperature above $80^{\circ}C$. The SPEEK was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstosilicic acid (Cs-TSiA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TSiA/ceria 1% membrane showed the optimum results such as 0.1882 S/cm of proton conductivity at $80^{\circ}C$, and 99.61 MPa of tensile strength which were better than Nafion 117 membrane.

Characteristics of Oxygen Permeation on $YBaCo_2O_{5+{\delta}}$ Ceramic Membrane ($YBaCo_2O_{5+{\delta}}$ 세라믹 분리막의 산소투과 특성)

  • Pyo, Dae-Woong;Kim, Jong-Pyo;Park, Jung-Hoon
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • $YBaCo_2O_{5+{\delta}}$ oxide was synthesized by solid state reaction and a typical dense membrane has been prepared using as-prepared powder by unilateral pressing and sintering at $1,180^{\circ}C$. The $YBaCo_2O_{5+{\delta}}$ membraneswas analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD analysis showed the double layered perovskite structure was observed over $1,150^{\circ}C$ without impurities. Oxygen permeation was measured in the temperature range from 750 to $950^{\circ}C$ according to oxygen partial pressure difference between feed and permeation side. The oxygen permeation flux increased with increasing temperature and oxygen partial pressure and the maximum oxygen flux of $YBaCo_2O_{5+{\delta}}$ membrane with 1.0 mm thickness was about 0.15 mL/$cm^2{\cdot}min$ at $950^{\circ}C$ and $PO_2$ = 0.42 atm. The activation energy for oxygen permeation decreased with decreasing oxygen partial pressure to be 76.0 kJ/mol at the condition of $PO_2$ = 0.21 atm.

A proposal on SOFC-PEMFC combined system for maritime applications

  • Duong Phan Anh;Ryu Borim;Nguyen Quoc Huy;Lee Jinuk;Kang Hokeun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.162-163
    • /
    • 2022
  • Maritime transportation is going to transfer to alternative fuels as a result of the worldwide demands toward decarbonization and tougher maritime emissions regulations. Methanol is considered as a potential marine fuel, which has the ability to reduce SOx and CO2 emissions, reduce climate change effects, and achieve the objective of green shipping. This work proposes and combines the innovative combination system of direct methanol solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC), gas turbines (GT), and organic Rankine cycles (ORC) for maritime vessels. The system's primary power source is the SOFC, while the GT and PEMFC use the waste heat from the SOFC to generate useful power and improve the system's ability to use waste heat. Each component's thermodynamics model and the combined system's model are established and examined. The multigeneration system's energy and exergy efficiency are 76.2% and 30.3%, respectively. When compared to a SOFC stand-alone system, the energy efficiency of the GT and PEMFC system is increased by 19.2%. The use of PEMFC linked SOFC has significant efficiency when a ship is being started or maneuvered and a quick response from the power and propulsion plant is required.

  • PDF

Hydrogen Permeation of SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β Proton-Conducting Ceramic Membranes (프로톤 전도성 SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β 복합체 멤브레인의 수소투과 특성)

  • Kim, Hwan-Soo;Yu, Ji-Haeng;Shin, Min-Jae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • Proton conductors have attracted considerable attention for solid oxide fuel cell (SOFC), hydrogen pump, gas sensor, and membrane separators. Doped $SrCeO_3$ exhibits appreciable proton conductivity in hydrogen-containing atmosphere at high temperature. However commercial realization has been hampered due to the reactivity of $SrCeO_3$ with $CO_2$. The chemical stability and proton conductivity are dependent on dopant type. The purpose of this work is to investigate chemical stability of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composites in $CO_2$ and $H_2$ gases. Thermogravimetric analysis (TGA) was performed in gaseous $CO_2$ and electrical conductivity of the composites were also measured between 500 and $900^{\circ}C$ in air and $H_2$ atmosphere. $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes showed good chemical stability of in $CO_2$ atmosphere and high conductivity at hydrogen condition. The hydrogen permeation of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes was investigated as a function of volumetric content of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}$. The $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$(6:4) membrane with a thickness of 1.0 mm showed the highest hydrogen permeability with the flux reaching of 0.12 $ml/min{\cdot}cm^2$ at $800^{\circ}C$ in 100%$H_2/N_2$ as feed gas.

A Study on the Development Trends of Polymer Electrolyte Membrane Fuel Cells and Application to Ships (국내외 PEMFC 개발 동향 및 선박 적용에 관한 고찰)

  • Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.657-666
    • /
    • 2022
  • The International Maritime Organization(IMO) recommends the active implementation of national policies on technological development and energy efficiency to reduce Green House Gas (GHG) in the international shipping sector. Such IMO environmental regulation policies have a great impact on the entire shipping sector and are also a heavy burden on ship's owners. The most reasonable way to curb GHG emissions from ships comes down to the development of zero-emission ships. In other words, the development of a fuel cell ship (FCS) driven by an eco-friendly fuel is an alternative that can escape the IMO regulations. Countries in Asia, Northern America, and Europe independently develop and produce PEMFC, and are pursuing international standardization by acquiring approval in principle from an internationally accredited registration authority. Currently, there are three types of fuel cells (FC) that are recommended for ships: a Polymer Electrolyte Membrane Fuel Cell (PEMFC), a Molten Carbonate Fuel Cell (MCFC), and a Solid Oxide Fuel Cell (SOFC). In this study, PEMFC, which is expected to grow continuously in the global FC market, was analyzed domestic and international development trends, specifications, performance, and empirical cases applied to ships. In addition, when applying PEMFC to ships, it was intended to suggest matters to be considered and the development direction.

Apoptotic Effects of A Cisplatin and Eugenol Co-treatment of G361 Human Melanoma Cells

  • Park, Jun-Young;Jo, Jae-Beom;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • Eugenol (4-allyl-2-methoxyphenol) is a naturally occurring phenolic compound that is widely used in dentistry as a component of zinc oxide eugenol cement that is commonly applied to the mouth environment. Cisplatin is one of the most potent known anticancer agents and shows significant clinical activity against a variety of solid tumors. This study was undertaken to investigate the synergistic apoptotic effects of co-treatments with eugenol and cisplatin on human melanoma (G361) cells. To investigate whether this co-treatment efficiently reduces the viability of G361 cells compared with each single treatment, an MTT assay was conducted. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and an analysis of DNA hypoploidy. Western blot analysis and immunofluorescent staining were also performed to evaluate the expression levels and the translocation of apoptosis-related proteins following this co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) changes were also assayed. The results indicated that a co-treatment with eugenol and cisplatin induced multiple pathways and processes associated with an apoptotic response in G361 cells including nuclear condensation, DNA fragmentation, a reduction in MMP and proteasome activity, the increase and decrease of Bax and Bcl-2, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, and the activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD). In contrast, separate treatments of 300 ${\mu}M$ eugenol or 3 ${\mu}M$ cisplatin for 24 h did not induce apoptosis. Our present data thus suggest that a combination therapy of eugenol and cisplatin is a potential treatment strategy for human melanoma.

Design and Analysis of a Novel Methanol SOFC Combined System for Marine Applications Toward Future Green Shipping Goals

  • Duong Phan Anh;Ryu Bo Rim;Hokeun Kang
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.106-119
    • /
    • 2023
  • Due to global decarbonization movement and tightening of maritime emissions restrictions, the shipping industry is going to switch to alternative fuels. Among candidates of alternative fuel, methanol is promising for decreasing SOx and CO2 emissions, resulting in minimum climate change and meeting the goal of green shipping. In this study, a novel combined system of direct methanol solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC), gas turbine (GT), and organic Rankine cycle (ORC) targeted for marine vessels was proposed. The SOFC is the main power generator of the system, whereas the GT and PEMFC could recover waste heat from the SOFC to generate useful power and increase waste heat utilizing efficiency of the system. Thermodynamics model of the combined system and each component were established and analyzed. Energy and exergy efficiencies of subsystems and the entire system were estimated with participation of the first and second laws of thermodynamics. The energy and exergy efficiencies of the overall multigeneration system were estimated to be 76.2% and 30.3%, respectively. The combination of GT and PEMFC increased the energy efficiency by 18.91% compared to the SOFC stand-alone system. By changing the methanol distribution ratio from 0.05 to 0.4, energy and exergy efficiencies decreased by 15.49% and 5.41%, respectively. During the starting up and maneuvering period of vessels, a quick response from the power supply system and propulsion plant is necessary. Utilization of PEMFC coupled with SOFC has remarkable meaning and benefits.