• Title/Summary/Keyword: solid media

Search Result 519, Processing Time 0.024 seconds

Rapid and Simultaneous Determination of Volatile Fatty Acids and Indoles in Pig Slurry and Dog Excrement by Solid-Phase Micro-Extraction Method with Gas Chromatography

  • Kim, Hyun-Jung;Yu, Mee-Seon;Yang, Sung-Bong
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1693-1701
    • /
    • 2014
  • A rapid and simple method for the quantitative determination of volatile fatty acids (VFAs; propionic acid, n-butyric acid, i-valeric acid and n-valeric acid) and indoles (phenol, p-cresol, 4-ethyl phenol, indole and skatole) in pig slurry and dog excrement using solid-phase micro-extraction (SPME) coupled to gas chromatography was evaluated. $50/30{\mu}m$ DVB/CAR/PDMS (Divinylbenzene/Carboxen/Polydimethylsiloxane) fiber was used to extract the target compounds in aqueous media. Sample amount and adsorption time was standardized for the routine analysis. Detection limits were from 0.11 to $0.15{\mu}gL$ for VFAs and from 0.12 to $0.28{\mu}gL$ for indoles and the correlations observed ($R^2$) were 0.975~1.000. This method was applied to the pig slurry, fertilizer, compost and dog excrement. In nearly all cases, the indoles were detected in concentrations of higher than their limits of detection (DOLs). But the VFAs in swine manure were below their DOLs.

Air Compressibility Effect in CFD-based Water Impact Analysis (CFD 기반 유체충격 해석에서 공기 압축성 효과)

  • Tran, Huu Phi;Ahn, Hyung-Taek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.581-591
    • /
    • 2011
  • This paper describes the air compressibility effect in the CFD simulation of water impact load prediction. In order to consider the air compressibility effect, two sets of governing equations are employed, namely the incompressible Navier-stokes equations and compressible Navier-Stokes equations that describe general compressible gas flow. In order to describe violent motion of free surface, volume-of-fluid method is utilized. The role of air compressibility is presented by the comparative study of water impact load obtained from two different air models, i.e. the compressible and incompressible air. For both cases, water is considered as incompressible media. Compressible air model shows oscillatory behavior of pressure on the solid surface that may attribute to the air-cushion effect. Incompressible air model showed no such oscillatory behavior in the pressure history. This study also showed that the CFD simulation can capture the formation of air pockets enclosed by water and solid surface, which may be the location where the air compressibility effect is dominant.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.817-828
    • /
    • 2022
  • In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Pioglitazone (Pioglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석)

  • Im, Jeong-Hyuk;Lee, Yong-Kyu;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • We synthesized PEG-PLA (or PLGA) amphiphilic di-block copolymers, which consist of PEG as biocompatible and hydrophilic block and PLA (or PLGA) as biodegradable and hydrophobic block, by ring opening polymerization of LA in the presence of methoxy PEG as a macroinitiator. The compositions and the molecular weights of the copolymers were controlled by changing the feed ratio of LA (and GA) to PEG initiator. The di-block copolymers could self-assemble in aqueous media to form micellar structure. A hydrophobic model drug, pioglitazone, was loaded into the polymer micelle using solid dispersion and dialysis methods, and the drug-loaded micelles were characterized by AFM, DLS and HPLC measurements. The drug loading capacity and in vitro release studies were performed and evaluated under various conditions. These results indicated that the amphiphilic di-block copolymers of PEG-PLA (or PLGA) could solubilize pioglitazone by solid dispersion method and the drug release was modulated according to micellar chemical compositions.

Penetration of Paclitaxel in Multicellular Layers of Human Colorectal Cancer Cells (인체 대장암세포 다층배양계에서 파크리탁셀의 투과)

  • Choi, Mi-Sun;Park, Jong-Kook;AL-Abd Ahmed M.;Kuh Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.385-392
    • /
    • 2006
  • Paclitaxel is an important chemotherapeutic agent for the treatment of human solid tumors. Multicellular resistance(MCR) is considered to be a major mechanism of resistance of human solid tumors to chemotherapeutic agent such as paclitaxel, which includes barriers to drug penetration through tumor tissues. Multicellular layers(MCL) cultures resemble in vivo tumor condition in terms of MCR and has been used successfully to produce clinically relevant data. In the present study, we evaluated the penetration characteristics and post-penetration anti-proliferative activity of paclitaxel using MCL of human colorectal cancer cells(DLD-1 and HT-29) grown in Transwell inserts. The penetration of $[^{14}C]-paclitaxel$ was slower than that of mannitol which penetrates via paracellular pathway in DLD-1 MCL. The penetration of $[^{14}C]-paclitaxel$ was faster in HT-29 MCL compared to DLD-1 MCL, i.e., at 10 ${\mu}M$ 100% and 40% penetration were observed after 48 hr incubation for HT-29 and DLD-1 cells, respectively. When calculated using anti-proliferative activity in the conditioned media of bottom chamber, the penetration after 24 hr was very limited(less than 50%) and concentration-dependent at the concentrations tested in both MCL's. These results suggest that limited and differential penetration of paclitaxel in tumor tissues may contribute to lower and differential efficacy against human solid tumors.

Optimization of Culture Media for Solid-state Culture of Pleurotus ferulae

  • Cha Wol-Suk;Choi DuBok;Kang Si-Hyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.369-373
    • /
    • 2004
  • In order to elucidate the possibility of artificial production of p. ferulae by solid-state culture, the optimization of culture conditions was carried out. When $NH_4H_2PO_4$ and $CaCO_3$ were used in the cultures using test tube with 30 g of Populus sawdust at $25^{\circ}C{\pm}1$ in the dark, the favored mycelial growth was observed with $1\%$ of $NH_4H_2PO_4$ and the production of polysaccharide was 7.85 mg/100 mg of mycelium with $1\%$ of $CaCO_3$. The mixtures of $80\%$ of Populus Sawdust and $20\%$ of rice bran at $60\%$ of water content were determined to be optimal for the production of fruiting bodies in the sawdust culture. When three treatments containing various ratios of garlic powder were conducted, yields of fruiting bodies were drasti[ally higher than those of Synthetic mixture without garlic powder The highest yield (143 g/bag) was obtained with $7\%$ garlic powder. The yield of synthetic mixture containing $7\%$ of garlic powder was $83\%$ higher than that of Sawdust culture. The reason why garlic powder did support growth was not clear but it is possible that garlic powder might contain effective components for the formation of fruiting body. The optimal synthetic mixture composition consisted of cotton seed $77\%$, lime $6.4\%,\;K_2HPO_4\;0.2\%,\;KH_2PO_4\;0.2\%,\;CaHPO_4\;0.2\%$, corn flour $4\%$, wheat flour $5\%$, and garlic pow-der $7\%$.

Chitinase을 생산하는 곤충병원미생물 Metarhizium anisopliae HY-2(KCTC 0156BP)의 토양해충 생물검정

  • Seo, Eun-Yeong;Son, Gwang-Hui;Sin, Dong-Ha;Kim, Gi-Deok;Park, Du-Sang;Park, Ho-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.469-472
    • /
    • 2002
  • Solid state fermentation was performed for the production of entomopathogenic fungus Metarhizium anisopliae HY-2 using wheat bran media containing rice bran. Fungal growth in a solid state fermentation system was estimated by viable cell count, spore count, and mycelial biomass. It was used chemical method measuring N-acetyl-glucosamine (chitin) content for estimating of mycelial biomass. In static flask culture, viable cell reached 2.40 ${\times}$ $10^8$ cfu/g at 23 days of culture at $27^{\circ}C$ and then mycelial biomass was 41.59 mg/g. Specific growth rate(${\mu}$ max) was 0.0418 $h^{-1}$ between 3 and 9 days when estimated by viable cell count and was 0.00976 $h^{-1}$ between 9 and 17 days when N-acetylglucosamine content was measured. Viable cells reached 1.12 ${\times}$ $10^8$ cfu/g in polypropylene-bag at 28 days of culture at $27^{\circ}C$. Formulated microbial pesticide containing M. anisopliae HY-2 were tested their bio-activity against Chestnut Brown Chafer (Adoretus tenuimaculatus). The protection rate of the liquid culture showed 13 ${\sim}$ 26 % with 1st to 3rd instar, and spore suspension of M. anisopliae HY-2 showed 56 ${\sim}$ 64%. Conidia produced by large scale solid-state fermentation showed 20 ${\sim}$ 27 % activity 60 ${\sim}$ 64 % with M. anisopliae HY-2.

  • PDF

Optimization of Tannase Production by Aspergillus niger in Solid-State Packed-Bed Bioreactor

  • Rodriguez-Duran, Luis V.;Contreras-Esquivel, Juan C.;Rodriguez, Raul;Prado-Barragan, L. Arely;Aguilar, Cristobal N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.960-967
    • /
    • 2011
  • Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett-Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature ($30^{\circ}C$), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.

A Study on the Red Carpet Dress of Film Festivals in the Great China Region

  • Wang, Ling;Lee, Misuk
    • Journal of Fashion Business
    • /
    • v.18 no.3
    • /
    • pp.148-166
    • /
    • 2014
  • The purpose of this study is to establish the basic materials necessary for red carpet fashion design by examining the formativeness and fashion images of red carpet dresses at film festivals in the Great China Region. For the purpose of this study, research methods include a literature review on the origin and significance of red carpet dresses, the characteristics of film festivals in the Great China Region and their red carpet dresses as well as an analysis of the formative features and images of 615 red carpet dresses collected from each film festival official homepage, diverse media articles, and online search sites (www.google.com, www.hao123.com). The research finding can be summarized as follows: First, the formative features of red carpet dress designs were analyzed herein. It was found that the most frequently appearing type of silhouette was straight followed by hourglass and bulk in order. More specifically these included fit and flare, mermaid, trapeze, and slim in order. For the neckline styles, strapless was the most frequently seen followed by camisole, jewel, and one shoulder. Solid colors were more often seen than multiple colors. Bk, W, R, and YR were the most frequent main solid colors in order. Solid materials were frequent as well, such as soft and shiny materials. Non-patterned and unadorned styles were most frequent as for pattern types and details and trimmings. Second, the fashion images of red carpet dresses in the Great China Region were analyzed. The most frequent images were elegant, feminine, ethnic, modern, classic, avant-garde, others, mannish and sportive, in order.