• Title/Summary/Keyword: solid fermentation

Search Result 410, Processing Time 0.027 seconds

Production of Cellulolytic Enzymes by Trichoderma harzianum FJ1 in Solid State Fermentation. (Trichoderma harzianum FJ1의 고체상태배양에 의한 섬유소분해효소의 생산)

  • 유승수;김경철;김성준
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.257-263
    • /
    • 2003
  • The cellulases production in solid state fermentation (SSF) of Trichoderma harzianum FJ1 with high cellulases productivity using cellulosic wastes was investigated. Physical and chemical conditions of the fermentation, such as moisture content, initial pH, and composition of mixed substrate (wine waste, rice straw, and soybean flour) on FPase (Filter paper activity) production were examined. The enzyme production was optimized in the conditions of moisture content of 70%, pH 5.0, 3$0^{\circ}C$, and 1:1:1 composition of mixed substrate containing wine waste, rice straw, and soybean flour. The highest activities of FPA, CMCase, Xylanase, $\beta$-glucosidase, and Avicelase in the optimized culture conditions were 15.2, 69.1, 83.9, 29.2, and 4.2 unit/g-SDW in 5 day cultivation, respectively. Economical and efficient production of cellulolytic enzymes by T harzianum FJ1 using cellulosic wastes in solid state fermentation will contribute to the biological saccharification of cellulosic wastes with enormous potential resource value in future.

Quantitative Analysis of Marker Substances of Paeonia lactiflora by Solid Fermentation (작약의 고체발효에 따른 지표성분의 함량분석)

  • Lee, Ji-Hye;Um, Young-Ran;Park, Hwa-Yong;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.15 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • The purpose of this study was investigation of quantitative analysis of marker substances in Paeonia lactiflora extracts by solid fermentation. High performance liquid chromatography (HPLC) for the determination of albiflorin and paeoniflorin in P. lactiflora extracts by solid fermentation, the separation method was performed on C18 column ($250\;mm\;{\times}\;4.6\;mm$, $5\;{\mu}m$, RS tech) using gradient solvent mixtures of water-acetonitrile with photodiode array detector (230nm). The flow rate was 1.0 ml/min. Retention time of albiflorin and paeoniflorin was about 28.88, 31.92 min and linearity of calibration was showed good result(r2 = 0.9998, 0.9996), respectively. Content of albiflorin was $0.090\;{\pm}\;0.03%$ in P. lactiflora extract(control), $0.102\;{\pm}\;0.00%$ in P. lactiflora extract fermented with Paecilomyces japonica, $0.056\;{\pm}\;0.01%$ in P. lactiflora extract fermented with Ganoderma lucidum, $0.093\;{\pm}\;0.00%$ in P. lactiflora extract fermented with honey and $0.046\;{\pm}\;0.00%$ in P. lactiflora extract fermented with Nuruk. Content of paeoniflorin was $4.506\;{\pm}\;0.13%$ in control, $2.599\;{\pm}\;0.04%$ in P. lactiflora extract fermented with Paecilomyces japonica, $1.222\;{\pm}\;0.03%$ in P. lactiflora extract fermented with Ganoderma lucidum, $2.750\;{\pm}\;0.05%$ in P. lactiflora extract fermented with honey and $0.847\;{\pm}\;0.00%$ in P. lactiflora extract fermented with Nuruk, respectively. Content of the marker substances did not increase in all fermentation experiment group.

  • PDF

Medium optimization for keratinase production by a local Streptomyces sp. NRC 13S under solid state fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.119-129
    • /
    • 2013
  • Thirteen different Streptomyces isolates were evaluated for their ability to produce keratinase using chicken feather as a sole carbon and nitrogen sources under solid state fermentation (SSF). Streptomyces sp. NRC 13S produced the highest keratinase activity [1,792 U/g fermented substrate (fs)]. The phenotypic characterization and analysis of 16S rDNA sequencing of the isolate were studied. Optimization of SSF medium for keratinase production by the local isolate, Streptomyces sp. NRC13S, was carried out using the one-variable-at-a-time and the statistical approaches. In the first optimization step, the effect of incubation period, initial moisture content, initial pH value of the fermentation medium, and supplementation of some agro-industrial by-products on keratinase production were evaluated. The strain produced about 2,310 U/gfs when it grew on chicken feather with moisture content of 75% (w/w), feather: fodder yeast ratio of 70:30 (w/w), and initial pH 7 using phosphate buffer after 8 days. Based on these results, the Box-Behnken design and response surface methodology were applied to find out the optimal conditions for the enzyme production. The corresponding maximal production of keratinase was about 2,569.38 U/gfs.

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Maktouf, Sameh;Kamoun, Amel;Moulis, Claire;Remaud-Simeon, Magali;Ghribi, Dhouha;Chaabouni, Semia Ellouz
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.489-498
    • /
    • 2013
  • A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.

Production of protein-bound polysaccharides by solid-state fermentation of Coriolus versicolor (구름버섯의 고체발효에 의한 단백다당류 생산)

  • Park, Kyung-Sook;Park, Shin;Jung, In-Chang;Ha, Hyo-Cheol;Kim, Seon-Hee;Lee, Jae-Sung
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.184-189
    • /
    • 1994
  • The possibility of solid-substrate fermentation of Coriolus versicolor for the production of protein-bound polysaccharides(PBP) was studied. Zeolite and orchid-pot soil were used as solid materials for the culture because of the desirable physical properties. Glucose, sucrose and starch showed to be good carbon sources for the production of PBP by the solid-substrate fermantation of C. versicolor. Among the nitrogen sources, bactosoyton and peptone were very effective for the PBP production. The optimum pH for solid-substrate culture for the production of PBP was at the range of 5-6. The yields of PBP reached to 5-6 mg per 100 g solid-substrate.

  • PDF

Enzyme Activities and Substrate Degradation by Fungal Isolates on Cassava Waste During Solid State Fermentation

  • Pothiraj, C.;Eyini, M.
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.196-204
    • /
    • 2007
  • The growth and bioconversion potential of selected strains growing on cassava waste substrate during solid state fermentation were assessed. Rhizopus stolonifer showed the highest and the fastest utilization of starch and cellulose in the cassava waste substrate. It showed 70% starch utilization and 81% cellulose utilization within eight days. The release of reducing sugars indicating the substrate saccharification or degradation potential of the organisms reached the highest value of 406.5 mg/g by R. stolonifer on cassava waste during the eighth day of fermentation. The protein content was gradually increased (89.4 mg/g) on the eighth day of fermentation in cassava waste by R. stolonifer. The cellulase and amylase activity is higher in R. stolonifer than A. niger and P. chrysosporium. The molecular mass of purified amylase and cellulase seemed to be 75 KDal, 85 KDal respectively.

Biological Activities of Solid-fermentation Garlic with Lactic Acid Bacteria (Lactic acid bacteria를 이용한 마늘 고체 발효에 따른 생리활성)

  • Lee, Jung-Bok;Joo, Woo-Hong;Kwon, Gi-Seok
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.446-452
    • /
    • 2016
  • Garlic (Allium sativum L.) and its extracts have been used in a wide range of applications, including as folk medicines in many Asian countries. This traditional herb has several functional properties and strong biological activities, making it useful as a functional food material. This study investigated the biological activities of solid-garlic after fermentation by lactic acid bacteria. Several solid-garlic fermentation strains of lactic acid bacteria were isolated from Korean traditional fermented food or obtained from the Korean Collection for Type Cultures. Lactic acid bacteria showed selective growth in garlic extracts on MRS media. Fermentation of solid garlic (heated 121℃, 15 min or not heated) by lactic acid bacteria gave total polyphenol and flavonoid contents of 731.0-845.2 g/g and 92.68-413.58 g/g, respectively. The DPPH scavenging activities and SOD like activities were measured as 7,584% and 9499%, respectively. These activities were relatively higher than a positive control, vitamin C. Measurement of antidiabetic activity using α-glucosidase inhibition assay showed that solid garlic fermented with lactic acid bacteria gave a higher activity than the control, acarbose. Fermentation of solid garlic with lactic acid bacteria may therefore help to alleviate adverse biological activities, as well as provide functional food materials.

β-Glucosidase Recovery from a Solid-State Fermentation System by Aspergillus niger (Aspergillus niger 의 고체상태 발효 시스템에서의 β-Glucosidase 회수)

  • Chandra, M. Subhosh;Reddy, B. Rajasekhar;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.999-1004
    • /
    • 2010
  • Investigations were carried out on a $\beta$-glucosidase produced by Aspergillus niger under solid-state fermentation conditions as a model of enzyme recovery from fermented wheat bran. The leaching efficiency of distilled water to recover the enzyme from the fermented bran was higher than acetate buffer, citrate buffer, citrate-phosphate buffer and 5% methanol; thus, the conditions were further optimized with distilled water as the extracting agent. After fermented bran was washed three times with distilled water for 1.5 hr each under shaking conditions at 1:5 solid to solvent ratio, a maximum recovery of 0.025 U/g of wheat bran was obtained.

Physicochemical Qualities and Flavor Patterns of Traditional Chinese Vinegars Manufactured by Different Fermentation Methods and Aging Periods

  • Gao, Yaping;Jo, Yunhee;Chung, Namhyeok;Gu, Song-Yi;Jeong, Yong-Jin;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • Physicochemical properties of Fujian Yongchun aged vinegar (FYAV) and Shanxi mature vinegar (SMV) were compared in terms of the fermentation methods applied and aging periods (3, 5, 8, and 10 years), and combined E-nose/E-tongue analyses were performed to assess their flavors. Compared with submerged fermentation-derived FYAV, solid-state fermentation-derived SMV showed higher values of pH, brix, soluble solids, total phenolic content, and antioxidant activity, but not total acidity or total organic acids. Aging period resulted in an increase in pH, total phenolic content, and antioxidant activity. Principal component analysis based on E-tongue/E-nose analyses was performed to distinguish between the vinegars produced by different fermentation methods and under aging periods. Solid-state fermentation and an aging process were considered good techniques for vinegar brewing, considering the various organic acids and high levels of total phenolics and antioxidant activity.

Comparison of changes in functional characteristics of fermented soybean with different microbial strains

  • Hyewon Lim;Bosung Kim;Heewon Jung;Sungkwon Park
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.1047-1053
    • /
    • 2022
  • The purpose of this study was to compare the effect of solid-state fermentation on soybean using three microbial strains under four different fermentation times. Soybean was fermented for 12, 24, 36 or 48 hours with highly proteolytic microbes, either Bacillus amyloliquefaciens (BA), B. subtilis (BS), or B. subtilis var. natto (BN), and levels of total protein concentration, protein distribution, and antioxidant activity were analyzed. Total protein was highest in the BS 12 h group (9.21 ㎍·µL-1) and lowest in BN 48 h (6.80 ㎍·µL-1), respectively (p < 0.001). Furthermore, three microbes decomposed large molecular weight proteins as well as major allergens of soybean such as β-conglycinin, Gly m Bd 30K, and glycinin. Each treatment group showed the highest degradation rate at 48 h fermentation and among the three microbes, BS showed a relatively higher degradation rate. The radical scavenging ability, known as an indicator of antioxidant activity, showed a significant increase in all treatment groups except BA 24 h. The results from this study suggest that protein concentration, and degradation and antioxidant activity were affected by different types of microbial trains and fermentation period and that B. subtilis fermentation might be the most effective way to increase nutritional and functional properties of soybean.